
Homework: Recurrences

Name:

1. Show that the solution of T (n) = T (n− 1) + n is O(n2). (exercise 4.3–1, p. 87)

(a) (5 points) Show the solution using the substitution method.

(b) (5 points) Show the solution using the recursion tree method.

1



2. (10 points) Use a recursion tree to determine a good asymptotic upper bound on the recurrence T (n) =
T (n2 ) + n2. Use the substitution method to verify your answer. (Exercise 4.4–2, p. 92)

2



3. (5 points) Recall the Fibonacci sequence, {1, 1, 2, 3, 5, 8, 13, 21, . . .}. The following code snippet is a
recursive implementation of the Fibonacci sequence:

function fibonacci(n)

raise error if n < 0

if n = 0 or n = 1 then // or n < 2

return 1

else

return fibonacci(n - 1) + fibonacci(n - 2)

end

end

The recurrence relation, f(n) = f(n − 1) + f(n − 2), n > 1 describes how to compute the Fibonacci
number at location n. Sketch a recurrence tree for f(n) with a depth of 4.

Notice how quickly this tree grows. In fact T (n) = Ω(cn). Where c is 1±
√
5

2 . It’s also O(2n). How would
we classify this time (i.e. constant, linear, etc.)?

3



4. (5 points) The following code snippet is an iterative implementation of the Fibonacci sequence:

function fibonacci(n)

raise error if n < 0

f0 = 1

f1 = 1

fn = 1

for j in 2..n loop

fn = f0 + f1

f0 = f1

f1 = fn

end

return fn

end

Analyze the running time in Big O notation for the iterative implemenetation.

Which is faster, the recursive or iterative Fibonacci implementation? Explain your answer.

4


