

Learning Programming from Tutorials and Code

Puzzles: Children’s Perceptions of Value

Kyle J. Harms, Evan Balzuweit, Jason Chen, Caitlin Kelleher

Department of Computer Science & Engineering

Washington University in St. Louis

St. Louis, Missouri, United States

{kyle.harms, ebalzuweit, chenjy, ckelleher}@wustl.edu

Abstract— Tutorials and code puzzles are commonly used in

today’s novice programming environments to introduce computer

programming to children. While research has explored the

effectiveness of each instructional format at teaching different

kinds of information independently, little work has explored

learners’ perceptions of value in each or the strategic decisions

users make around the instructional format when learning to

program. We present a study in which learners selected from a set

of tutorials and puzzles with an identical set of programming

content. We explore the reasoning behind their choices and the

potential implications for the learning support available in future

programming environments.

Keywords—novice programming; code puzzles; programming

completion problems; Parsons problems; tutorials

I. INTRODUCTION

Children’s programming environments predominantly use
two instructional formats to support learning: tutorials that
present step-by-step instructions for learners to follow [1], [2]
and code puzzles that provide learners with a set of code
elements and a specific challenge [3]–[5]. Prior research
suggests that novices show more evidence of programming
knowledge when learning via puzzles compared to tutorials [6].

However, the same study found a surprising mismatch
between learning and motivation during the formative and
summative phases of the study [6]. The researchers observed
stronger motivation for puzzles during the formative, but found
no statistically significant difference in motivation during the
summative evaluation [6]. These findings suggest that children
may perceive value in both tutorials and puzzles.

In this paper, we build upon the prior study’s results by
conducting a qualitative study with an explicit analysis of the
motives and decisions middle school children make when
choosing a particular instructional format while learning to
program. Over the course of the study, we asked participants to
select and complete six programs using their choice of tutorials
and puzzles. Throughout the study, we interviewed participants
about their experiences and intentions for choosing between the
instructional formats. From this study, we hoped to learn about
the 1) circumstances under which novices choose to use tutorials
or puzzles, and 2) novices’ perceptions of value for each of the
instructional formats. The results suggest that users’ own
personal interests play a large role in their format selection and
that the range of scaffolding provided by the formats enables
learners to better follow and manage their own goals.

II. RELATED WORK

We consider two areas of related work: 1) adult students and
their perceptions of learning, and 2) the effectiveness of learning
programming independently, especially for children.

A. Learners’ Perceptions

Learners’ perceptions and choices influence the way they
navigate learning materials. For example, independent learners
often choose not to read directions and tend to avoid repetitive
practice exercises when following instructional materials [7],
[8]. Instead, learners prefer to begin working on their own tasks
immediately and use instructional materials as a reference only
when needed [8], [9]. Traditional-style instructional manuals
can be especially frustrating for these task-oriented learners [9].
Aligning instructional materials more appropriately to learners’
preferences improves their learning efficacy [9].

An alternative to aligning materials to learners’ preferences
is giving learners a choice in their learning and enabling them to
make their own learning decisions. In the context of
programming, students liked the ability to choose the
instructional format (e.g. self-guided lab, tutorial) of
supplemental classroom material [10], [11]. Students also felt
that choosing their learning materials, like programming
languages [12], projects [13], and online discussion format [14]
helped them learn better. Similarly, students reported that
compared to traditional classroom instruction, informal
resources (e.g. online courses) enabled them to choose materials
that were appropriate for their level, which they perceived as
improving their ability to learn [15]. However, beyond students’
perceptions, these researchers present little evidence that
demonstrates that choice actually helps students learn better.
Furthermore, we know little about how these results relate to
independent learners, especially children, when trying to learn
programming outside of the classroom experience.

B. Independent Learning Support

Novice programmers, and in particular children, who seek to
learn programming independently can choose from several
different instructional formats. Broadly, these formats fall into
four categories: learning from online courses, examples,
tutorials, and puzzle-like systems.

Massive open online courses (MOOCs) like Codecademy
[16], Khan Academy [17], and edX [18], are an increasingly
popular way for novices to learn programming. However, online
courses typically have high attrition rates, which can be

 978-1-5090-0252-8/16/$31.00 ©2016 IEEE

attributed to an inconsistency between learners’ goals and the
style of instructions [19], [20].

Instead, task-oriented learners can leverage example code
and tutorials when seeking instruction [21]. Tutorons annotate
online example code with explanation to help learners
understand the code [22]. Online tutorials that incorporate
example code with live program replay, like Online Python
Tutor [23] and Codepourri [24] may also help learners
understand code. Further, tutorials have been shown to help
children learn new programming concepts [25]. Yet, it is unclear
what value novices perceive in these tools.

An increasingly popular alternative is puzzle-like support for
learning programming independently. Probably the most well-
known puzzle-like system is the Hour of Code [3]. The Hour of
Code is specifically targeted at enabling children to learn
programming independently. Another popular type of code
puzzle, the Parsons problem [26], have also been used in
independent contexts [27], but they are more commonly used in
classrooms. Puzzle-like systems generally set an explicit goal
that users accomplish through programming. Frequently, this
involves navigating an object through a grid [5], [28], [29].
Puzzle-like systems have been shown to be effective tools to
enable children to learn programming independently [6], [28].
However, little is known about children’s perceptions of
instructional formats and how those perceptions factor into their
decisions on when to use a particular format.

III. EVALUATION

The goal of our exploratory study was to identify the factors
that influenced participants’ decisions about learning content
and instructional format. We asked participants to complete six
instructional tasks. For each task, participants selected both the
program (i.e. animation) they wanted to learn to create and the
instructional format (i.e. tutorial or puzzle). We interviewed
participants throughout the study to gather information about the
choices they made when choosing an instructional format.

A. Instructional Formats

For this study, we decided to use the novice programming
environment, Looking Glass [30]. Looking Glass is a blocks-
based programming environment designed to motivate middle
school children to program by authoring 3D animations.

1) Tutorials
The tutorials presented users with a sequence of steps. For

each step, the tutorial provides short textual instructions as well
as a looping video demonstrating how to perform that step as
shown in Fig. 1-E. Prior research comparing the effectiveness of
tutorials and puzzles used this format [6], which was originally
based on tutorials implemented within Scratch [1].

2) Puzzles
When completing puzzles, participants had a complete set of

programming statements that comprise the solution (Fig. 1-B).
To complete a puzzle, participants dragged the programming
statements into the editor (Fig. 1-C). Participants could view the
output of their current program, as well as the target output. This
style of puzzle is inspired by the problem completion effect [31],
in which high school students who learned programming by
completing incomplete programs showed greater learning than
those who constructed the same programs from scratch. We note
that the puzzle mechanics are similar to Parsons problems [26],
however these puzzles provide additional support intended to
facilitate independent learning [6].

B. Participants

We recruited 30 participants between the ages of 10 and 15
years (14 female, 16 male; age: M = 11.2, SD = 1.3) from the
Academy of Science of St. Louis mailing list. The Academy of
Science is a not-for-profit organization in the St. Louis
metropolitan area dedicated to science outreach. Participants
self-reported their prior programming experience. Eighteen
participants had less than three hours of prior programming
experience, whereas twelve participants had at least three hours
of prior programming experience. We compensated participants
with a $10 gift card.

Fig. 1. Participants are given a list of 14 instructional tasks (A). Participants choose whether to complete an instructional task (A) as a tutorial or a puzzle. When

completing a puzzle, participants drag unused statements (B) and reassemble them into the correct order (C). For the tutorial, participants work in the Looking Glass
programming environment (D) and follow the video and textual instructions in the tutorial pane (E).

C. Methods

We conducted our study through 30 individual, two-hour
sessions. See Fig. 2 for an overview of the study procedure. In
the first part of the study, we familiarized participants with the
study procedure. When participants arrived, we asked them to
complete a demographic and programming experience survey.
We then briefed participants on the study format. During the
briefing we also primed participants by requesting that they
focus on the goal of increasing their programming skills while
working their way through the study. During our pilot testing we
discovered that many participants made decisions based on
whether they found an animation interesting. We have chosen to
include this priming in our study in order to gather perceptions
of value beyond compelling animations.

After the briefing, we conducted the pre-study interview and
then asked participants to complete two familiarization tasks.
The familiarization tasks were designed to introduce participants
to the experience of using a tutorial and puzzle. We randomly
assigned participants to complete a tutorial or puzzle first.
During the familiarization tasks, we informed each participant
that we could provide assistance and answer questions. We also
informed participants that once they began the instructional task
part of the study, we would be unable to provide any assistance.

For the remainder of the study, we asked participants to
complete six instructional tasks. Participants selected from
among fourteen animations. For each animation, participants
decided whether they would use a tutorial or a puzzle to learn
how to create that animation (see Fig. 1-A). There was no time
limit for the instructional tasks. Upon completion of each task, a
researcher interviewed the participant about that task. We
allowed participants to stop working on a task at any time. If a
participant choose to stop before completing a task, we
interviewed them about their decision to quit that task.

After completing the instructional tasks, we interviewed
participants about their entire study experience in the post-study
interview. We then asked them to complete two motivation
inventories, one for tutorials and one for puzzles. Participants
decided which motivation inventory they completed first.

D. Materials

Our study included familiarization tasks, instructional tasks,
semi-structured interviews, and surveys. We iteratively
developed and refined these materials through a pilot study with
29 participants (9 female, 20 male; age: M = 11.2, SD = 1.8).

1) Familiarization Tasks
The familiarization tasks each consisted of a simple,

sequential animation with four statements. Each animation
could be completed as a tutorial or as a puzzle.

2) Instructional Tasks
We developed fourteen instructional tasks. An instructional

task is a complete program (i.e. animation) that participants can
choose to complete as a tutorial or as a puzzle. The animations
spanned a range of difficulties and programming concepts.

Programming constructs included sequential execution, repeat,
do together, repeat + do together, and do together + do in order.

Additionally, we developed an interface that allows
participants to select an instructional task (Fig. 1-A). The
interface shows all available animations, ordered and numbered
by difficulty (1 to 14). We established the difficulty ordering
based on pilot testing. For each task, the interface contains a
thumbnail of the animation, the animation’s title, the ranked
difficulty (1-14), a difficulty label (easier, medium, and harder),
and the programming constructs demonstrated in the program.
Participants could also click the thumbnail to view the full
animation for each task.

3) Semi-Structured Interviews
We developed questions for four semi-structured interviews:

a pre-study interview, a post-task interview, an early termination
interview, and a post-study interview. Each interview contained
questions that sought extended responses and one-word
responses. We captured participants’ responses in audio
recordings. The interview questions were informed and refined
by the themes that emerged through our pilot study.

The pre-study interview contained five questions about
participants’ prior programming experience. Additionally, we
asked participants to rank their programming skill using a Likert
scale from novice (1) to expert (5) [32]. For all Likert scales in
the study, we presented both numerical and ordinal values.

In the post-task interview, we asked participants a series of
17 questions about their decision, the quality and value of their
experience with the task, and what they planned to do next.
Three questions asked participants to rank their expected
difficulty for the task, the actual difficulty for the task, and how
difficult the task would have been if they had used the other
instructional format using a Likert scale ranging from extremely
easy (1) to extremely difficult (9) [33].

The early termination interview consisted of a subset of the
questions from the post-task interview. These questions focused
on perceived difficulty and their plans for what to work on next.
We included an additional question asking participants about
their reasons for terminating the task early.

In the post-study interview, we asked participants twenty
questions exploring their experiences during the study, their
preferences regarding instructional task format, difficulties with
tasks, and comparative questions about the value between the
instructional formats. We also asked participants to re-rate their
programming experience from novice (1) to expert (5).

4) Surveys
Our study included two surveys. The first survey, completed

before starting the study, asked participants to self-report their
age, gender, schooling and prior programming experience. For
the second survey, completed at the end of the study, we used
the Intrinsic Motivation Inventory’s Task Evaluation
Questionnaire (TEQ) [34]. The TEQ is a 22-item Likert survey
with four subscales: interest/enjoyment, perceived competence,

Fig. 2. From left to right, the order of the study’s activities.

perceived choice, and pressure/tension. Participants rated their
agreement with individual statements from not true at all (1) to
very true (7). We asked participants to complete two TEQ
surveys, one for tutorials and one for puzzles.

IV. ANALYSIS

We analyzed the reliability of the TEQ motivation subscales
and performed a qualitative coding on the interview responses.

A. TEQ Surveys

We determined the reliability of the TEQ motivation
subscales by combining the results from the tutorial and puzzle
TEQ surveys and computing Cronbach’s alpha for each
subscale. Three of the subscales were reliable (α > .70):
interest/enjoyment (α = .92), perceived choice (α = .77), and
pressure/tension (α = .73). We have not reported the results for
perceived competence subscale (α = .68).

B. Interview Responses

The primary data analysis we performed was the qualitative
coding of the interview data. Over the course of the study, we
collected an average of 40.2 (SD = 8.8) minutes of recorded
interview responses for each participant. We transcribed the
audio recordings and separated the responses by question. This
produced a total of 3,915 question responses. Because we used
semi-structured interviews, the responses to some questions
included follow-on questions and responses. We grouped any
follow-on questions with the original interview question.

Using a grounded theory approach, we developed a set of
high-level categories for the responses. We chose to categorize
based on participants’ responses rather than the questions for
two reasons: 1) the interviews included related questions and 2)
participants sometimes responded with information that did not
perfectly align to each question. We developed the initial
categories by manually sorting roughly 10% of the responses
into similar groups. We identified five categories: decision
rationales, expected task difficulty, sources of ease and
difficulty, experience outcomes, and other. Reassuringly, the
categories that emerged from this process align closely with the
themes we tried to incorporate into the interviews. Once the
categories emerged, two researchers labeled a new random
sample of 20% of the responses. We reached very high
agreement (Cohen’s κ > .8) for the categories (κ = .95, p < .001).
One researcher then categorized the remaining responses.

We subsequently repeated this process to develop sublabels
for each of the high-level categories, with the exception of the
other category. We omitted the other category, because many of
the responses were unrelated. Because the sublabels were based
on the original high-level categories, we report Bonferroni
adjusted p values for Cohen’s κ. We reached very high
agreement for all sublabels as shown in Table I. We report the
sublabels for each category in the results section.

V. RESULTS

We share our findings in this study by reporting each
category separately. Each of the categories provides insight into
the decisions that participants made, the factors that influenced
those decisions, and participants’ perceptions of value that they
received from the task and instructional format. For each
category, we share relevant survey results and summarize the
general themes that emerged from participants’ responses.

When summarizing the interview responses, we report each
category’s sublabels in two ways: 1) the overall percentage a
sublabel was cited across all tasks in the study and 2) the
percentage of participants who cited the sublabel at least once
during the study. The percentage across all tasks gives insight
into what types of decisions participants made, whereas the
percentage across all participants helps demonstrate what factors
participants identify as important. We report a summary of each
high-level category’s sublabels in Tables II-V. In these tables we
summarize the interview responses in the same two ways: 1) %
of Tasks, and 2) % of Participants, respectively. For each high-
level category we had two additional sublabels that we do not
discuss in our results: no reason / neutral and other. The no
reason / neutral sublabel captured responses that provided no
reason and were often neutral in sentiment, for example “it was
good.” The other sublabel captures responses that did not
answer the question or that are off topic.

We begin by first discussing the decision rationales category
to understand participants’ decisions. We then follow-up with
the remaining high-level categories shown in Table I.

A. Decision Rationales

The decision rationales category analyzes the explicit
reasons participants gave for choosing an instructional task and
format. In total, participants worked on 167 instructional tasks
(62 tutorials, 105 puzzles). 21 participants (70%) completed all
six instructional tasks; the remaining 9 participants (30%)
completed between three and five tasks (Mdn = 4, M = 4, SD =
.83). Most participants chose to work on both tutorials (Mdn =
2) and puzzles (Mdn = 3). Overall, 10% of participants decided
to work on more tutorials than puzzles, 60% of participants
worked on more puzzles, and 30% of participants decided to
work on an equal number of both.

Participants indicated that they valued both the tutorial and
puzzle formats. In the post-study interview, we asked
participants which format they were more likely to use on their
own after this study and 53% of participants responded that they
would use both, while 30% said puzzles, and the remaining 17%
said tutorials. This is further supported by the variety of
decisions participants made during the study. Overall, we see
that the majority of participants (73%) used both tutorials and
puzzles. While a small minority show a strong preference
(number of tasks minus one) for tutorials (3%) or puzzles (13%).

From the sublabels, we see that participants made decisions
based on personal preference, improving their programming
skills, and challenge (see Table II). We found that participants
were more likely to choose a task based on their personal
preference rather than choosing a task based on improving their
programming skills. However, when they did make a decision
to improve their programming skills, many participants chose

TABLE I. SUBLABEL INTERRATER AGREEMENT

High-Level Category % of Responses Cohen’s κ adj. p <

Decision Rationales 16% .89 .001

Expected Task Difficulty 13% .85 .001

Sources of Ease & Difficulty 15% .88 .001

Experience Outcomes 38% .86 .001

Other 18% n/a n/a

the tutorials, the format that has been shown to be less effective
[6]. Throughout the study participants also actively managed the
difficulty of their tasks by choosing an instructional format that
they believed would increase or decrease each task’s challenge.

1) Personal Preference
Personal preference was a common reason participants cited

for their decisions. Overall, our results suggest that participants
enjoyed completing puzzles more than tutorials.

Participants cited enjoying the instructional format as an
important factor in their decisions. In total 53% of participants
made a decision during the study based on whether they liked
the instructional format. 43% of participants based at least one
decision on enjoying the puzzles, “I like the puzzles. They’ve all
been fun.” In contrast, only 17% of participants cited making a
decision based on liking the tutorials, “I like the tutorials better.”
The greater enjoyment of puzzles is also reflected in the
percentage of tasks: participants cited enjoyment of puzzles in
20% of tasks, while only citing enjoyment in 8% of tutorials.

In the post-study interview, we asked participants which
instructional format they enjoy more. Again, we see a preference
towards puzzles: 80% of participants stated that they enjoy the
puzzles more, compared to 13% who enjoy the tutorials more,
and 7% who enjoy both. This preference is also reflected in the
TEQ motivation survey’s interest/enjoyment scale. Using a
multilevel model, we found that participants rated the puzzles as
significantly more enjoyable (M = 5.8, SD = 1.0) than the
tutorials (M = 4.3, SD = 1.5), χ2(1) = 17.52, p < .001.

In 48% of tasks, participants cited enjoying an animation as
the reason for making a decision. In total 83% of participants
made a decision that was based on whether or not they liked the
animation. Participants cited the overall appeal of an animation:
“Probably just because it looked like a fun animation to do.”
Some participants also described specific attributes: “I liked
how the alien kicked the spaceship to start it up and when it flew
away.” The specific content presented via learning resources is
an important attribute for children learning to program.

2) Improve Programming Skills
Participants made fewer decisions that prioritized improving

their programming skills compared to their personal interests.
When making decisions to improve their programming skills,
they did so either directly, by seeking to acquire new

programming skills or indirectly, by trying to gain a better
understanding of their skill level or the instructional formats.

A relatively small number of participants (37%) cited a goal
of improving their programming skills across only 12% of tasks.
This is a surprisingly low result given that we primed
participants to make decisions to improve their skills. However,
when participants did cite improving programming skills as a
goal, they were more than twice as likely to have chosen a
tutorial (19% of tasks) than a puzzle (7% of tasks). This
difference seems to reflect a belief from users that they learn
more using tutorials. When asked for the reason behind a tutorial
decision, one participant explained, “Because it was a new skill
that I hadn’t learned before, so if I did it as a puzzle I’d probably
not quite understand exactly what it was trying to teach me.”
This tendency to select tutorials when prioritizing learning is
interesting because it does not reflect the results of a study
comparing the two formats which found that puzzles were both
more efficient and effective for learning new concepts [6].

Choosing appropriate learning goals also requires both
accurate knowledge of the available learning resources and
knowledge of their own abilities. Participants described a variety
of goals that contribute towards these types of self-knowledge.
In 21% of tasks, participants described their desire to discover
their skill level. Some attempted discovery by equally using both
formats. One participant justified a decision as “Just so I can get
a feel for both tutorials and puzzles.” Other participants talked
about comparing the difficulty between the two formats: “I
wanted it to be a little harder than the tutorial because I wanted
to see if it’d make a big difference or not.”

Participants’ responses indicate a strong preference towards
enjoyment rather than improving skills. However, when
attempting to improve their programming skills, their responses
suggest a nuanced approach in which they explore what roles
resources could play, assess their own skill level, and select
resources that they believe could contribute towards that goal.

3) Challenge
Participants frequently cited challenge, pushing their

abilities, as a factor in their decisions. Overall, 87% of
participants sought challenge while 60% also avoided
challenge. Plotting the expected difficulty of each instructional
task for each participant, we observed fluctuation between easy
and hard tasks for roughly 80% of participants. Of the remaining
20%, 7% of participants consistently avoided challenge, and
13% consistently sought challenge. This suggests that
participants do not always want to work on the hardest task, they
prefer a mix between challenging and non-challenging tasks.

When seeking challenge, participants tended to select
puzzles. Participants described seeking a challenge for 57% of
the puzzles and 32% of the tutorials. When avoiding challenge,
participants favored tutorials. In 39% of tutorial decisions and
12% of puzzle decisions, participants expressed a desire to
decrease the challenge level. This disparity suggests that
participants perceived tutorials as being easier. The post-
interview provided further support for the perception that
tutorials are easier. In each post-task interview we asked
participants to rank the difficulty of their chosen instructional
format from 1 to 9. Participants ranked puzzles as significantly
more difficult (M = 4.8, SD = 1.9) than tutorials (M = 3.8, SD =

TABLE II. DECISION RATIONALE RESPONSE THEMES

% of Tasks

(Tutorials a, Puzzles a)

% of Participants

(Females, Males)

Personal Preference 56% (52%, 58%) 87% (71%, 100%)

Enjoyed Animation 48% (47%, 49%) 83% (71%, 94%)

Liked Format 16% (8%, 20%) 53% (43%, 63%)

Improve Programming Skills 32% (52%, 21%) 73% (79%, 69%)

Improve Skill 12% (19%, 8%) 37% (36%, 38%)

Discover Level 21% (34%, 13%) 53% (64%, 44%)

Challenge 66% (65%, 68%) 100% (100%, 100%)

Avoid Challenge 22% (39%, 12%) 60% (43%, 75%)

Seek Challenge 48% (32%, 57%) 87% (93%, 81%)

Other 17% (13%, 19%) 53% (36%, 69%)

No Reason / Neutral 12% (13%, 11%) 40% (29%, 50%)

Other 5% (0%, 8%) 27% (21%, 31%)

a. Percent of sublabels for all tutorials/puzzles; not percent across all tasks.

1.6), χ2(27) = 86.75, p < .001. Further, participants also never
ranked a tutorial above a six, suggesting a difficulty ceiling for
tutorials. Participants also reported significantly less
pressure/tension in the TEQ motivation survey when using the
tutorials (M = 1.9, SD = .9) compared to puzzles (M = 2.8, SD =
1.1), χ2(1) = 10.46, p < .01.

Participants’ desires to seek challenge were mostly
straightforward: “I like having to challenge my mind more.” We
saw two classes of reasons for avoiding challenge. The first
group of participants expressed a desire to complete an
animation they expected to be too challenging for them. These
participants perceived tutorials as a more gentle introduction to
the content required for a challenging animation. “I picked it as
a tutorial because it looked like it had lots more complexity than
the other ones and I didn’t want to just jump right in without
knowing what I was doing.” The second group of participants
avoided challenge after extending themselves outside of their
comfort range. “I think I’m going to do mostly tutorials from
now on because this was a bit hard.”

While there is some variety in what participants perceived as
too difficult, participants who gave up on a task before
successfully completing it arguably felt that they had taken on
too much. We note that this was relatively rare; it happened for
8 of 167 total tasks. However, all eight of these tasks were
puzzles. For these eight, participants uniformly went on to easier
tasks afterwards. Six chose to complete a tutorial for their next
task. The other two chose an easier puzzle. While the failed tasks
are a more extreme situation, participants’ decisions to reduce
the difficulty were consistent with the overall pattern of pushing
a little bit and then scaling back. The presence of both puzzles
and tutorials empowered participants to adjust the experience to
meet their own learning and confidence needs.

B. Expected Task Difficulty

In the decision rationales section we saw that challenge was
a prominent reason given for making a decision. When trying to
manage challenge, participants considered a variety of
information that informed their expectations about task
difficulty (see Table III). Our results suggest that participants
used appropriate factors for predicting task difficulty.
Participants typically weighed several practical factors: their
prior programming experience, their perception of the
instructional format’s intrinsic difficulty, and the animation’s
labeled difficulty. However, there is one factor that may hamper
their ability to do this accurately: animation complexity.

1) Programming Experience
70% of participants considered their own programming

experience when reasoning about difficulty. One participant
expected a task to be easy “Because all of the skills in this one I
had already learned.” An additional 10% of participants
reasoned about code structure. Another participant expected a
selected task to be difficult: “Because it was a new skill that I
hadn’t learned and I’d have to figure out that you would have to
put the Do in Order inside the Do Together with something
outside of the Do in Order.”

2) Instructional Format
47% of participants based their expectations of difficulty on

the instructional format. For example, one participant expected
that, “The tutorial experience would be pretty easy.” Participants
often stated that tutorials were easier “Because all you do is look
at the tutorial, it tells you what to do, you do that, and then you
turn the page and you do that again with the next instruction.”

During the post-study interview, we asked participants to
summarize their advice to potential new users about when they
should use tutorials and puzzles. Their advice reiterates the
theme of using the different instructional formats to manage
challenge. 17% of participants stated that you should use a
tutorial when you expect a task to be difficult. 13% of
participants stated that you should use a puzzle when you want
to challenge yourself. Lastly, 41% of participants thought that if
something is new for you, you should do a tutorial first, and then
practice with puzzles later.

3) Labeled Difficulty
Our task selection interface labeled all tasks with one of three

difficulty labels: easier, medium, and harder. In 31% of tasks,
participants based their expectations on these difficulty labels.

4) Animation Complexity
63% of participants stated that they expected a task to be

easy or difficult based on watching the animation. One
participant expected a task to be challenging “just because there
was, I mean, it looked like there was lots of stuff happening.” In
total, participants used animation complexity to inform their
difficulty assessment in 23% of tasks. While this may be a
natural thing to do, it creates an interesting tension. Participants
often considered the appeal of an animation in selecting a task.
Participants’ desire to complete a compelling animation creates
an incentive to create more complex and visually interesting
animations. However, the same push towards compelling
animations may also lead users to perceive them as out of reach.

C. Sources of Ease & Difficulty

When making decisions, participants commonly used their
generalizations about difficulty as discussed in the previous
sections. However, in the post-task interviews participants
identified what they believed to be the source of difficulty for
that task. Participants’ expectations often aligned with their
actual experience of difficulty. In this section, we discuss the
elements that participants felt contributed to the ease or
difficulty of completing tasks (see Table IV). Overall,
participants identified fairly common sources of difficulty.
Participants felt that the instructional format, their prior
programming experience, the interface’s mechanics, and their
own personal degree of struggle, were sources of task difficulty.

TABLE III. EXPECTED TASK DIFFICULTY RESPONSE THEMES

% of Tasks

(Tutorials a, Puzzles a)

% of Participants

(Females, Males)

Programming Experience 23% (21%, 24%) 77% (71%, 81%)

Programming Experience 20% (19%, 21%) 70% (71%, 69%)

Code Structure 2% (2%, 3%) 10% (0%, 19%)

Instructional Format 14% (31%, 4%) 47% (50%, 44%)

Labeled Difficulty 31% (21%, 36%) 67% (64%, 69%)

Animation Complexity 23% (23%, 23%) 63% (71%, 56%)

Other 16% (13%, 18%) 43% (50%, 38%)

No Reason / Neutral 14% (10%, 17%) 40% (50%, 31%)

Other 2% (3%, 1%) 10% (7%, 13%)

a. Percent of sublabels for all tutorials/puzzles; not percent across all tasks.

1) Instructional Format
Unsurprisingly, 87% of participants cited the instructional

format as a source of ease or difficulty. The responses here were
consistent with the overall perception that tutorials are easier as
we have noted elsewhere. 77% of participants identified tutorials
as easy or difficult because of the format while only 43% said
the same for puzzles. We note however, that 74% of these
responses for tutorials are cited for being easy, whereas the
responses for puzzles are spread across easy and difficult.

2) Prior Experience & Barriers
For many users, content familiarity made tasks easier and a

lack of it created the potential for barriers. If a participant had
prior experience with a programming concept, they tended to
perceive it as easier, “It was much easier than I thought it was,
just using the stuff that I had already learned.” In total, 60% of
participants cited that their familiarity with a programming
concept made that task easier for them. Participants’ experiences
of difficulty based on their background were consistent with
their background-based expectations of difficulty. In contrast,
93% of participants cited a conceptual barrier, or not
understanding a programming concept, as a source of difficulty
in the tasks. One participant said that “Not knowing that it was
actually possible to put Do in Order inside with Do Together”
made a task difficult. Conceptual barriers are also strongly
associated with puzzles. 87% of participants stated that a
conceptual barrier caused them difficulty in puzzles, whereas
only 23% of participants said the same for tutorials.

We also saw a translation barrier, connecting a programming
statement with its output, as a source of difficulty for
participants working on puzzles. 13% of participants stated that
the translation barrier was a source of difficulty for them.

3) Mechanics
30% of participants cited the instructional format’s

mechanics as a cause for difficulty. In the tutorial, participants
found watching and following the video difficult whereas in the
puzzle, participants found watching the correct output difficult.
Participants also found the programming environment’s
mechanics difficult. In total, 57% of participants cited the
mechanics of the programming environment as a source of
difficulty.

4) Degree of Struggle
Lastly, participants cited their own perceptions as a source

of ease and difficulty. These perceptions were often very self-
referential in nature: in essence, participants seemed to express
“It was hard because I found it hard.” Some participants talked
about “having to do it over and over and over and over again.”
Others referenced the amount of time necessary to complete the
task: “It was hard and long. It took me a really long time to do
it.” In 18% of puzzles and 13% of tutorials, participants cited
length as a source of ease or difficulty. Using a multilevel model,
we noted that participants spent significantly longer on puzzles
(M = 8.2, SD = 6.6 minutes) than tutorials (M = 7.92, SD = 4.6
minutes), χ2(27) = 67.39, p < .001. Overall, 83% of participants
explained their perception of difficulty through their own
experience at least once during the study.

D. Experience Outcomes

Our final category, experience outcomes, explores the values
that participants perceived while completing instructional tasks
(see Table V). Participants received enjoyment from completing
the tasks and also improved their programming skills. However,
in many tasks participants were unable to state what outcome or
benefit they received from completing the task.

1) Enjoyment
In the decision rationales section we noted that participants

often made decisions based on their preference. When we asked
participants in the post-task interviews what they got out of a
task, one of the most common responses was that they simply
enjoyed it. 63% of participants enjoyed the animation content,
73% enjoyed working on the task, and 90% enjoyed completing
the task. 83% and 53% of participants stated that they enjoyed
puzzles and tutorials, respectively. The most interesting
responses described struggling to complete the task and taking
strong satisfaction from that success. As one participant said,
“The more you struggle at something the more exciting it is
when you finish it.” Echoing the other results, satisfaction from
completing a task is a theme we saw more strongly with puzzles
than tutorials. One possible explanation for the enjoyment
disparity between puzzles and tutorials is that participants saw
value in the freedom to solve the problem: “The best part was
having to figure everything out.” Our TEQ results suggest that
participants perceived more choice in the puzzles (M = 6.4, SD
= .7) than the tutorials (M = 6.0, SD = .9), χ2(1) = 6.48, p < .05.

TABLE IV. SOURCES OF EASE & DIFFICULTY RESPONSE THEMES

% of Tasks

(Tutorials a, Puzzles a)

% of Participants

(Females, Males)

Instructional Format 31% (58%, 15%) 87% (79%, 94%)

Prior Experience & Barriers 55% (37%, 66%) 100% (100%, 100%)

Prior Experience 23% (24%, 22%) 60% (50%, 69%)

Conceptual Barrier 37% (15%, 51%) 93% (86%, 100%)

Translation Barrier 2% (0%, 4%) 13% (7%, 19%)

Mechanics 21% (29%, 16%) 63% (57%, 69%)

Instructional Format 11% (10%, 11%) 30% (36%, 25%)

Programming Environment 13% (24%, 6%) 57% (50%, 63%)

Degree of Struggle 49% (32%, 59%) 90% (86%, 94%)

My Experience 37% (21%, 47%) 83% (79%, 88%)

Length 16% (13%, 18%) 57% (79%, 38%)

Other 25% (26%, 25%) 73% (71%, 75%)

No Reason / Neutral 25% (26%, 24%) 70% (71%, 69%)

Other 1% (2%, 1%) 7% (0%, 13%)

a. Percent of sublabels for all tutorials/puzzles; not percent across all tasks.

TABLE V. EXPERIENCE OUTCOMES RESPONSE THEMES

% of Tasks

(Tutorials a, Puzzles a)

% of Participants

(Females, Males)

Enjoyment 80% (79%, 80%) 97% (100%, 94%)

Liked Animation 27% (27%, 27%) 63% (64%, 63%)

Working on Task 26% (32%, 22%) 73% (71%, 75%)

Finishing Task 50% (45%, 53%) 90% (86%, 94%)

Improve Programming Skills 62% (61%, 63%) 97% (93%, 100%)

Learned Skill 44% (50%, 40%) 87% (71%, 100%)

Improved Competency 22% (23%, 21%) 63% (64%, 63%)

Practice 34% (32%, 35%) 87% (86%, 88%)

No Benefit 66% (71%, 64%) 97% (93%, 100%)

Other 92% (100%, 87%) 100% (100%, 100%)

No Reason / Neutral 87% (97%, 81%) 100% (100%, 100%)

Other 35% (44%, 31%) 87% (86%, 88%)

a. Percent of sublabels for all tutorials/puzzles; not percent across all tasks.

2) Improve Programming Skills
Participants stated improving their programming skills as an

outcome. We note that this may be due in part to our priming to
prioritize learning. Participants often distinguished between
three concepts: learning, general competency, and practice.

When participants talked about learning, they focused on
their introduction to a new concept or programming element.
Overall, 87% of participants stated they learned a specific
programming skill from completing a task. 70% of participants
reported they learned new programming skills from the puzzles,
compared to 60% of participants who reported the same for
tutorials. This contrasts with participants’ stated decisions
around learning, where we found that they tended to select
tutorials when citing a learning goal (see section V.A.2). 63% of
participants reported improved computing competency. While
87% of participants also reported finding value in practicing
using the instructional tasks. As one participant stated, “I
enjoyed it. It was fun to practice on my own with the skills that
I had just learned.” 70% of participants reported that the puzzles
helped them reinforce their skills, compared to just 50% of
participants who said the same thing about tutorials.

We compared the reported programming experience from
the pre-study and post-study interviews: 80% of participants felt
more competent after completing the study, 17% reported no
change, and a single participant reported feeling less competent.

3) No Benefit
In 66% of tasks participants responded to some interview

questions that they did not benefit from the task. In most cases,
this was in response to a question about what specific
programming knowledge did they learn from the task. Recall
that in only 44% of tasks was learning a specific skill cited.
Frequently, participants did not know what they had just learned.
Many recognized that the task was useful (i.e. practice) but could
not name a specific programming concept that they had learned.

VI. DISCUSSION

Below we discuss the implications this work has for novice
programming environments.

A. Choice & Motivation

While direct evidence of learning suggests that puzzles are a
better choice than tutorials [6], participants saw value in both
formats beyond improving their skills. This is an exciting result
that suggests that since participants primarily care about
animation choice and balancing difficulty, we should consider
providing multiple formats with a range of scaffolding that
enables users to obtain adequate support while perusing their
interests. This might include traditional formats like tutorials
and puzzles. But it could also include formats designed for open-
ended situations like remixing code [25], [35] or providing hints
or suggestions while users work on their own projects [36], [37].
This would empower users to improve their skills while making
decisions based on their own goals.

B. Challenge

In this study, almost every participant made a decision where
they were seeking challenge. Given the prevalence of this
decision rationale, we encourage novice programming
environment developers to specifically seek out avenues to

enable their users to challenge themselves. Additionally, based
on the challenge fluctuation we saw in the study, we suggest that
novice programming environments provide mechanisms to
allow users to alternate between easy and challenging tasks.

C. Learning

A majority of participants made a decision based on trying
to discover which tasks were appropriate for their skill level.
Because this rationale appears to be both important for users and
commonplace, programming environment designers should
consider ways that enable participants to explore their abilities.
We observed that in several MOOCs and puzzle-like systems,
users are not allowed to progress until they have finished the
current lesson or level. Our result suggests that designers of
these systems should give users the choice and the freedom to
choose their own tasks, even if they may not be ready for them.
This comes with its own risk; users may feel discouraged after
failing to complete a task. However, as we observed in this
study, many of the participants who failed to complete a puzzle
were driven to discover their mistake by using another
instructional format or by selecting an easier task.

VII. THREATS TO VALIDITY

In this study we used a semi-structured interview that we
specifically geared towards learning programming. We also
primed participants to improve their programming skills. Our
specific focus on learning may skew our results away from other
factors that also affect decisions and perceptions of value.
However, even when we explicitly encouraged participants to
prioritize learning, participants were more likely to make their
decisions based on their preferences and desire for challenge.

This study sought to identify the perceptions of value that
novice programmers see in two specific instructional formats.
While the specifics of these perceptions may not hold to other
formats, our general conclusions about the factors that
participants feel are important, like challenge, will likely hold
for other instructional formats. However, outside of middle
school children, these results would likely differ for other
demographics, like expert programmers. We also note that
participants with a stronger interest in programming may have
self-selected to participate in this study.

VIII. CONCLUSION

In this paper, we presented a qualitative study investigating
which instructional formats users preferred and why they chose
to use them. We discovered that enjoyment, challenge, and
perceived value all play important roles in a user’s decision to
choose between instructional formats. We hope that this data can
help inform improvements to novice programming
environments that further advance their independent learning
capabilities. We hope that with these decision factors identified,
empirical results will soon follow which demonstrate whether
these factors are helpful to our ultimate goal of helping novices
learn programming independently.

ACKNOWLEDGMENT

This material is based upon work supported by the National
Science Foundation under Grants No. 1054587 and 1440996.
We would like to thank Michelle Ichinco for her valuable advice
during analysis and Craig Anslow for his feedback on this paper.

REFERENCES

[1] “Scratch.” [Online]. Available: https://scratch.mit.edu/.

[2] “MIT App Inventor.” [Online]. Available: http://appinventor.mit.edu/.

[3] “Hour of Code,” CSEd Week. [Online]. Available: http://csedweek.org/.

[4] “Gidget.” [Online]. Available: http://www.helpgidget.org/.

[5] “Lightbot.” [Online]. Available: http://lightbot.com/.

[6] K. J. Harms, N. Rowlett, and C. Kelleher, “Enabling independent learning
of programming concepts through programming completion puzzles,” in
2015 IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC), 2015, pp. 271–279.

[7] R. L. Mack, C. H. Lewis, and J. M. Carroll, “Learning to Use Word
Processors: Problems and Prospects,” ACM Trans Inf Syst, vol. 1, no. 3,
pp. 254–271, Jul. 1983.

[8] J. M. Carroll and S. A. Mazur, LisaLearning. Citeseer, 1985.

[9] J. M. Carroll, P. L. Smith-Kerker, J. R. Ford, and S. A. Mazur-Rimetz,
“The Minimal Manual,” Human–Computer Interact., vol. 3, no. 2, pp.
123–153, Jun. 1987.

[10] M. Hamada, “Web-based Tools for Active Learning in Information
Theory,” in Proceedings of the 38th SIGCSE Technical Symposium on
Computer Science Education, New York, NY, USA, 2007, pp. 60–64.

[11] A. Radenski, “Digital Support for Abductive Learning in Introductory
Computing Courses,” in Proceedings of the 38th SIGCSE Technical
Symposium on Computer Science Education, New York, NY, USA, 2007,
pp. 14–18.

[12] A. Radenski, “Freedom of Choice As Motivational Factor for Active
Learning,” in Proceedings of the 14th Annual ACM SIGCSE Conference
on Innovation and Technology in Computer Science Education, New
York, NY, USA, 2009, pp. 21–25.

[13] J. A. Stone and E. M. Madigan, “The Impact of Providing Project Choices
in CS1,” SIGCSE Bull, vol. 40, no. 2, pp. 65–68, Jun. 2008.

[14] F. Ke and K. Xie, “Online Discussion Design on Adult Students’ Learning
Perceptions and Patterns of Online Interactions,” in Proceedings of the
9th International Conference on Computer Supported Collaborative
Learning - Volume 1, Rhodes, Greece, 2009, pp. 219–226.

[15] J. Boustedt, A. Eckerdal, R. McCartney, K. Sanders, L. Thomas, and C.
Zander, “Students’ Perceptions of the Differences Between Formal and
Informal Learning,” in Proceedings of the Seventh International
Workshop on Computing Education Research, New York, NY, USA,
2011, pp. 61–68.

[16] “Codecademy.” [Online]. Available: http://www.codecademy.com/.

[17] “Khan Academy.” [Online]. Available: http://www.khanacademy.org.

[18] “edX.” [Online]. Available: https://www.edx.org/.

[19] K. Benda, A. Bruckman, and M. Guzdial, “When Life and Learning Do
Not Fit: Challenges of Workload and Communication in Introductory
Computer Science Online,” Trans Comput Educ, vol. 12, no. 4, p. 15:1–
15:38, Nov. 2012.

[20] A. P. Rovai, “In search of higher persistence rates in distance education
online programs,” Internet High. Educ., vol. 6, no. 1, pp. 1–16, st 2003.

[21] M. B. Rosson, J. Ballin, and J. Rode, “Who, What, and How: A Survey
of Informal and Professional Web Developers,” in Proceedings of the
2005 IEEE Symposium on Visual Languages and Human-Centric
Computing, Washington, DC, USA, 2005, pp. 199–206.

[22] A. Head, C. Appachu, M. A. Hearst, and B. Hartmann, “Tutorons:
Generating context-relevant, on-demand explanations and
demonstrations of online code,” in 2015 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC), 2015, pp. 3–12.

[23] P. J. Guo, “Online Python Tutor: Embeddable Web-based Program
Visualization for Cs Education,” in Proceeding of the 44th ACM
Technical Symposium on Computer Science Education, New York, NY,
USA, 2013, pp. 579–584.

[24] M. Gordon and P. J. Guo, “Codepourri: Creating visual coding tutorials
using a volunteer crowd of learners,” in 2015 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC), 2015, pp. 13–21.

[25] K. J. Harms, D. Cosgrove, S. Gray, and C. Kelleher, “Automatically
Generating Tutorials to Enable Middle School Children to Learn
Programming Independently,” in Proceedings of the 12th International
Conference on Interaction Design and Children, New York, NY, USA,
2013, pp. 11–19.

[26] D. Parsons and P. Haden, “Parson’s Programming Puzzles: A Fun and
Effective Learning Tool for First Programming Courses,” in Proceedings
of the 8th Australasian Conference on Computing Education - Volume 52,
Darlinghurst, Australia, Australia, 2006, pp. 157–163.

[27] B. J. Ericson, M. J. Guzdial, and B. B. Morrison, “Analysis of Interactive
Features Designed to Enhance Learning in an Ebook,” in Proceedings of
the Eleventh Annual International Conference on International
Computing Education Research, New York, NY, USA, 2015, pp. 169–
178.

[28] M. J. Lee and A. J. Ko, “Comparing the Effectiveness of Online Learning
Approaches on CS1 Learning Outcomes,” in Proceedings of the Eleventh
Annual International Conference on International Computing Education
Research, New York, NY, USA, 2015, pp. 237–246.

[29] “CodeCombat: Learn to Code by Playing a Game,” CodeCombat.
[Online]. Available: http://codecombat.com. [Accessed: 13-Mar-2016].

[30] “Looking Glass.” [Online]. Available: http://lookingglass.wustl.edu/.

[31] J. J. G. Van Merrienboer and M. B. M. De Croock, “Strategies for
Computer-Based Programming Instruction: Program Completion Vs.
Program Generation,” J. Educ. Comput. Res., vol. 8, no. 3, pp. 365–394,
Jan. 1992.

[32] S. E. Dreyfus and H. L. Dreyfus, “A Five-Stage Model of the Mental
Activities Involved in Directed Skill Acquisition,” Feb. 1980.

[33] S. Kalyuga, P. Chandler, and J. Sweller, “Managing split-attention and
redundancy in multimedia instruction,” Appl. Cogn. Psychol., vol. 13, no.
4, pp. 351–371, 1999.

[34] “Intrinsic Motivation Inventory,” Self-Determination Theory. [Online].
Available: http://www.selfdeterminationtheory.org/questionnaires/10-
questionnaires/50.

[35] P. Gross, J. Yang, and C. Kelleher, “Dinah: an interface to assist non-
programmers with selecting program code causing graphical output,” in
Proceedings of the 2011 annual conference on Human factors in
computing systems, New York, NY, USA, 2011, pp. 3397–3400.

[36] C. Piech, M. Sahami, J. Huang, and L. Guibas, “Autonomously
Generating Hints by Inferring Problem Solving Policies,” in Proceedings
of the Second (2015) ACM Conference on Learning @ Scale, New York,
NY, USA, 2015, pp. 195–204.

[37] M. Ichinco, “Towards crowdsourced large-scale feedback for novice
programmers,” in 2014 IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC), 2014, pp. 189–190.

