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Abstract— Tutorials and code puzzles are commonly used in 

today’s novice programming environments to introduce computer 

programming to children. While research has explored the 

effectiveness of each instructional format at teaching different 

kinds of information independently, little work has explored 

learners’ perceptions of value in each or the strategic decisions 

users make around the instructional format when learning to 

program. We present a study in which learners selected from a set 

of tutorials and puzzles with an identical set of programming 

content. We explore the reasoning behind their choices and the 

potential implications for the learning support available in future 

programming environments. 
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I. INTRODUCTION 

Children’s programming environments predominantly use 
two instructional formats to support learning: tutorials that 
present step-by-step instructions for learners to follow [1], [2] 
and code puzzles that provide learners with a set of code 
elements and a specific challenge [3]–[5]. Prior research 
suggests that novices show more evidence of programming 
knowledge when learning via puzzles compared to tutorials [6].  

However, the same study found a surprising mismatch 
between learning and motivation during the formative and 
summative phases of the study [6]. The researchers observed 
stronger motivation for puzzles during the formative, but found 
no statistically significant difference in motivation during the 
summative evaluation [6]. These findings suggest that children 
may perceive value in both tutorials and puzzles. 

In this paper, we build upon the prior study’s results by 
conducting a qualitative study with an explicit analysis of the 
motives and decisions middle school children make when 
choosing a particular instructional format while learning to 
program. Over the course of the study, we asked participants to 
select and complete six programs using their choice of tutorials 
and puzzles. Throughout the study, we interviewed participants 
about their experiences and intentions for choosing between the 
instructional formats. From this study, we hoped to learn about 
the 1) circumstances under which novices choose to use tutorials 
or puzzles, and 2) novices’ perceptions of value for each of the 
instructional formats. The results suggest that users’ own 
personal interests play a large role in their format selection and 
that the range of scaffolding provided by the formats enables 
learners to better follow and manage their own goals. 

II. RELATED WORK 

We consider two areas of related work: 1) adult students and 
their perceptions of learning, and 2) the effectiveness of learning 
programming independently, especially for children. 

A. Learners’ Perceptions 

Learners’ perceptions and choices influence the way they 
navigate learning materials. For example, independent learners 
often choose not to read directions and tend to avoid repetitive 
practice exercises when following instructional materials [7], 
[8]. Instead, learners prefer to begin working on their own tasks 
immediately and use instructional materials as a reference only 
when needed [8], [9]. Traditional-style instructional manuals 
can be especially frustrating for these task-oriented learners [9]. 
Aligning instructional materials more appropriately to learners’ 
preferences improves their learning efficacy [9]. 

An alternative to aligning materials to learners’ preferences 
is giving learners a choice in their learning and enabling them to 
make their own learning decisions. In the context of 
programming, students liked the ability to choose the 
instructional format (e.g. self-guided lab, tutorial) of 
supplemental classroom material [10], [11]. Students also felt 
that choosing their learning materials, like programming 
languages [12], projects [13], and online discussion format [14] 
helped them learn better. Similarly, students reported that 
compared to traditional classroom instruction, informal 
resources (e.g. online courses) enabled them to choose materials 
that were appropriate for their level, which they perceived as 
improving their ability to learn [15]. However, beyond students’ 
perceptions, these researchers present little evidence that 
demonstrates that choice actually helps students learn better. 
Furthermore, we know little about how these results relate to 
independent learners, especially children, when trying to learn 
programming outside of the classroom experience. 

B. Independent Learning Support 

Novice programmers, and in particular children, who seek to 
learn programming independently can choose from several 
different instructional formats. Broadly, these formats fall into 
four categories: learning from online courses, examples, 
tutorials, and puzzle-like systems. 

Massive open online courses (MOOCs) like Codecademy 
[16], Khan Academy [17], and edX [18], are an increasingly 
popular way for novices to learn programming. However, online 
courses typically have high attrition rates, which can be 
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attributed to an inconsistency between learners’ goals and the 
style of instructions [19], [20]. 

Instead, task-oriented learners can leverage example code 
and tutorials when seeking instruction [21]. Tutorons annotate 
online example code with explanation to help learners 
understand the code [22]. Online tutorials that incorporate 
example code with live program replay, like Online Python 
Tutor [23] and Codepourri [24] may also help learners 
understand code. Further, tutorials have been shown to help 
children learn new programming concepts [25]. Yet, it is unclear 
what value novices perceive in these tools. 

An increasingly popular alternative is puzzle-like support for 
learning programming independently. Probably the most well-
known puzzle-like system is the Hour of Code [3]. The Hour of 
Code is specifically targeted at enabling children to learn 
programming independently. Another popular type of code 
puzzle, the Parsons problem [26], have also been used in 
independent contexts [27], but they are more commonly used in 
classrooms. Puzzle-like systems generally set an explicit goal 
that users accomplish through programming. Frequently, this 
involves navigating an object through a grid [5], [28], [29]. 
Puzzle-like systems have been shown to be effective tools to 
enable children to learn programming independently [6], [28]. 
However, little is known about children’s perceptions of 
instructional formats and how those perceptions factor into their 
decisions on when to use a particular format. 

III. EVALUATION 

The goal of our exploratory study was to identify the factors 
that influenced participants’ decisions about learning content 
and instructional format. We asked participants to complete six 
instructional tasks. For each task, participants selected both the 
program (i.e. animation) they wanted to learn to create and the 
instructional format (i.e. tutorial or puzzle). We interviewed 
participants throughout the study to gather information about the 
choices they made when choosing an instructional format. 

A. Instructional Formats 

For this study, we decided to use the novice programming 
environment, Looking Glass [30]. Looking Glass is a blocks-
based programming environment designed to motivate middle 
school children to program by authoring 3D animations. 

1) Tutorials 
The tutorials presented users with a sequence of steps. For 

each step, the tutorial provides short textual instructions as well 
as a looping video demonstrating how to perform that step as 
shown in Fig. 1-E. Prior research comparing the effectiveness of 
tutorials and puzzles used this format [6], which was originally 
based on tutorials implemented within Scratch [1]. 

2) Puzzles 
When completing puzzles, participants had a complete set of 

programming statements that comprise the solution (Fig. 1-B). 
To complete a puzzle, participants dragged the programming 
statements into the editor (Fig. 1-C). Participants could view the 
output of their current program, as well as the target output. This 
style of puzzle is inspired by the problem completion effect [31], 
in which high school students who learned programming by 
completing incomplete programs showed greater learning than 
those who constructed the same programs from scratch. We note 
that the puzzle mechanics are similar to Parsons problems [26], 
however these puzzles provide additional support intended to 
facilitate independent learning [6]. 

B. Participants 

We recruited 30 participants between the ages of 10 and 15 
years (14 female, 16 male; age: M = 11.2, SD = 1.3) from the 
Academy of Science of St. Louis mailing list. The Academy of 
Science is a not-for-profit organization in the St. Louis 
metropolitan area dedicated to science outreach. Participants 
self-reported their prior programming experience. Eighteen 
participants had less than three hours of prior programming 
experience, whereas twelve participants had at least three hours 
of prior programming experience. We compensated participants 
with a $10 gift card. 

Fig. 1. Participants are given a list of 14 instructional tasks (A). Participants choose whether to complete an instructional task (A) as a tutorial or a puzzle. When 

completing a puzzle, participants drag unused statements (B) and reassemble them into the correct order (C). For the tutorial, participants work in the Looking Glass 
programming environment (D) and follow the video and textual instructions in the tutorial pane (E). 

 



 

 

C. Methods 

We conducted our study through 30 individual, two-hour 
sessions. See Fig. 2 for an overview of the study procedure. In 
the first part of the study, we familiarized participants with the 
study procedure. When participants arrived, we asked them to 
complete a demographic and programming experience survey. 
We then briefed participants on the study format. During the 
briefing we also primed participants by requesting that they 
focus on the goal of increasing their programming skills while 
working their way through the study. During our pilot testing we 
discovered that many participants made decisions based on 
whether they found an animation interesting. We have chosen to 
include this priming in our study in order to gather perceptions 
of value beyond compelling animations.  

After the briefing, we conducted the pre-study interview and 
then asked participants to complete two familiarization tasks. 
The familiarization tasks were designed to introduce participants 
to the experience of using a tutorial and puzzle. We randomly 
assigned participants to complete a tutorial or puzzle first. 
During the familiarization tasks, we informed each participant 
that we could provide assistance and answer questions. We also 
informed participants that once they began the instructional task 
part of the study, we would be unable to provide any assistance. 

For the remainder of the study, we asked participants to 
complete six instructional tasks. Participants selected from 
among fourteen animations. For each animation, participants 
decided whether they would use a tutorial or a puzzle to learn 
how to create that animation (see Fig. 1-A). There was no time 
limit for the instructional tasks. Upon completion of each task, a 
researcher interviewed the participant about that task. We 
allowed participants to stop working on a task at any time. If a 
participant choose to stop before completing a task, we 
interviewed them about their decision to quit that task. 

After completing the instructional tasks, we interviewed 
participants about their entire study experience in the post-study 
interview. We then asked them to complete two motivation 
inventories, one for tutorials and one for puzzles. Participants 
decided which motivation inventory they completed first. 

D. Materials 

Our study included familiarization tasks, instructional tasks, 
semi-structured interviews, and surveys. We iteratively 
developed and refined these materials through a pilot study with 
29 participants (9 female, 20 male; age: M = 11.2, SD = 1.8).  

1) Familiarization Tasks 
The familiarization tasks each consisted of a simple, 

sequential animation with four statements. Each animation 
could be completed as a tutorial or as a puzzle.  

2) Instructional Tasks 
We developed fourteen instructional tasks. An instructional 

task is a complete program (i.e. animation) that participants can 
choose to complete as a tutorial or as a puzzle. The animations 
spanned a range of difficulties and programming concepts. 

Programming constructs included sequential execution, repeat, 
do together, repeat + do together, and do together + do in order. 

Additionally, we developed an interface that allows 
participants to select an instructional task (Fig. 1-A). The 
interface shows all available animations, ordered and numbered 
by difficulty (1 to 14). We established the difficulty ordering 
based on pilot testing. For each task, the interface contains a 
thumbnail of the animation, the animation’s title, the ranked 
difficulty (1-14), a difficulty label (easier, medium, and harder), 
and the programming constructs demonstrated in the program. 
Participants could also click the thumbnail to view the full 
animation for each task. 

3) Semi-Structured Interviews 
We developed questions for four semi-structured interviews: 

a pre-study interview, a post-task interview, an early termination 
interview, and a post-study interview. Each interview contained 
questions that sought extended responses and one-word 
responses. We captured participants’ responses in audio 
recordings. The interview questions were informed and refined 
by the themes that emerged through our pilot study. 

The pre-study interview contained five questions about 
participants’ prior programming experience. Additionally, we 
asked participants to rank their programming skill using a Likert 
scale from novice (1) to expert (5) [32]. For all Likert scales in 
the study, we presented both numerical and ordinal values. 

In the post-task interview, we asked participants a series of 
17 questions about their decision, the quality and value of their 
experience with the task, and what they planned to do next. 
Three questions asked participants to rank their expected 
difficulty for the task, the actual difficulty for the task, and how 
difficult the task would have been if they had used the other 
instructional format using a Likert scale ranging from extremely 
easy (1) to extremely difficult (9) [33]. 

The early termination interview consisted of a subset of the 
questions from the post-task interview. These questions focused 
on perceived difficulty and their plans for what to work on next. 
We included an additional question asking participants about 
their reasons for terminating the task early. 

In the post-study interview, we asked participants twenty 
questions exploring their experiences during the study, their 
preferences regarding instructional task format, difficulties with 
tasks, and comparative questions about the value between the 
instructional formats. We also asked participants to re-rate their 
programming experience from novice (1) to expert (5). 

4) Surveys 
Our study included two surveys. The first survey, completed 

before starting the study, asked participants to self-report their 
age, gender, schooling and prior programming experience. For 
the second survey, completed at the end of the study, we used 
the Intrinsic Motivation Inventory’s Task Evaluation 
Questionnaire (TEQ) [34]. The TEQ is a 22-item Likert survey 
with four subscales: interest/enjoyment, perceived competence, 

Fig. 2. From left to right, the order of the study’s activities. 

 



 

 

perceived choice, and pressure/tension. Participants rated their 
agreement with individual statements from not true at all (1) to 
very true (7). We asked participants to complete two TEQ 
surveys, one for tutorials and one for puzzles. 

IV. ANALYSIS 

We analyzed the reliability of the TEQ motivation subscales 
and performed a qualitative coding on the interview responses. 

A. TEQ Surveys 

We determined the reliability of the TEQ motivation 
subscales by combining the results from the tutorial and puzzle 
TEQ surveys and computing Cronbach’s alpha for each 
subscale. Three of the subscales were reliable (α > .70): 
interest/enjoyment (α = .92), perceived choice (α = .77), and 
pressure/tension (α = .73). We have not reported the results for 
perceived competence subscale (α = .68). 

B. Interview Responses 

The primary data analysis we performed was the qualitative 
coding of the interview data. Over the course of the study, we 
collected an average of 40.2 (SD = 8.8) minutes of recorded 
interview responses for each participant. We transcribed the 
audio recordings and separated the responses by question. This 
produced a total of 3,915 question responses. Because we used 
semi-structured interviews, the responses to some questions 
included follow-on questions and responses. We grouped any 
follow-on questions with the original interview question. 

Using a grounded theory approach, we developed a set of 
high-level categories for the responses. We chose to categorize 
based on participants’ responses rather than the questions for 
two reasons: 1) the interviews included related questions and 2) 
participants sometimes responded with information that did not 
perfectly align to each question. We developed the initial 
categories by manually sorting roughly 10% of the responses 
into similar groups. We identified five categories: decision 
rationales, expected task difficulty, sources of ease and 
difficulty, experience outcomes, and other. Reassuringly, the 
categories that emerged from this process align closely with the 
themes we tried to incorporate into the interviews. Once the 
categories emerged, two researchers labeled a new random 
sample of 20% of the responses. We reached very high 
agreement (Cohen’s κ > .8) for the categories (κ = .95, p < .001). 
One researcher then categorized the remaining responses. 

We subsequently repeated this process to develop sublabels 
for each of the high-level categories, with the exception of the 
other category. We omitted the other category, because many of 
the responses were unrelated. Because the sublabels were based 
on the original high-level categories, we report Bonferroni 
adjusted p values for Cohen’s κ. We reached very high 
agreement for all sublabels as shown in Table I. We report the 
sublabels for each category in the results section.  

V. RESULTS 

We share our findings in this study by reporting each 
category separately. Each of the categories provides insight into 
the decisions that participants made, the factors that influenced 
those decisions, and participants’ perceptions of value that they 
received from the task and instructional format. For each 
category, we share relevant survey results and summarize the 
general themes that emerged from participants’ responses.  

When summarizing the interview responses, we report each 
category’s sublabels in two ways: 1) the overall percentage a 
sublabel was cited across all tasks in the study and 2) the 
percentage of participants who cited the sublabel at least once 
during the study. The percentage across all tasks gives insight 
into what types of decisions participants made, whereas the 
percentage across all participants helps demonstrate what factors 
participants identify as important. We report a summary of each 
high-level category’s sublabels in Tables II-V. In these tables we 
summarize the interview responses in the same two ways: 1) % 
of Tasks, and 2) % of Participants, respectively. For each high-
level category we had two additional sublabels that we do not 
discuss in our results: no reason / neutral and other. The no 
reason / neutral sublabel captured responses that provided no 
reason and were often neutral in sentiment, for example “it was 
good.” The other sublabel captures responses that did not 
answer the question or that are off topic. 

We begin by first discussing the decision rationales category 
to understand participants’ decisions. We then follow-up with 
the remaining high-level categories shown in Table I. 

A. Decision Rationales 

The decision rationales category analyzes the explicit 
reasons participants gave for choosing an instructional task and 
format. In total, participants worked on 167 instructional tasks 
(62 tutorials, 105 puzzles). 21 participants (70%) completed all 
six instructional tasks; the remaining 9 participants (30%) 
completed between three and five tasks (Mdn = 4, M = 4, SD = 
.83). Most participants chose to work on both tutorials (Mdn = 
2) and puzzles (Mdn = 3). Overall, 10% of participants decided 
to work on more tutorials than puzzles, 60% of participants 
worked on more puzzles, and 30% of participants decided to 
work on an equal number of both. 

Participants indicated that they valued both the tutorial and 
puzzle formats. In the post-study interview, we asked 
participants which format they were more likely to use on their 
own after this study and 53% of participants responded that they 
would use both, while 30% said puzzles, and the remaining 17% 
said tutorials. This is further supported by the variety of 
decisions participants made during the study. Overall, we see 
that the majority of participants (73%) used both tutorials and 
puzzles. While a small minority show a strong preference 
(number of tasks minus one) for tutorials (3%) or puzzles (13%).  

From the sublabels, we see that participants made decisions 
based on personal preference, improving their programming 
skills, and challenge (see Table II). We found that participants 
were more likely to choose a task based on their personal 
preference rather than choosing a task based on improving their 
programming skills. However, when they did make a decision 
to improve their programming skills, many participants chose 

TABLE I.  SUBLABEL INTERRATER AGREEMENT 

High-Level Category % of Responses Cohen’s κ adj. p < 

Decision Rationales 16% .89 .001 

Expected Task Difficulty 13% .85 .001 

Sources of Ease & Difficulty 15% .88 .001 

Experience Outcomes 38% .86 .001 

Other 18% n/a n/a 

 



 

 

the tutorials, the format that has been shown to be less effective 
[6]. Throughout the study participants also actively managed the 
difficulty of their tasks by choosing an instructional format that 
they believed would increase or decrease each task’s challenge. 

1) Personal Preference 
Personal preference was a common reason participants cited 

for their decisions. Overall, our results suggest that participants 
enjoyed completing puzzles more than tutorials. 

Participants cited enjoying the instructional format as an 
important factor in their decisions. In total 53% of participants 
made a decision during the study based on whether they liked 
the instructional format. 43% of participants based at least one 
decision on enjoying the puzzles, “I like the puzzles. They’ve all 
been fun.” In contrast, only 17% of participants cited making a 
decision based on liking the tutorials, “I like the tutorials better.” 
The greater enjoyment of puzzles is also reflected in the 
percentage of tasks: participants cited enjoyment of puzzles in 
20% of tasks, while only citing enjoyment in 8% of tutorials. 

In the post-study interview, we asked participants which 
instructional format they enjoy more. Again, we see a preference 
towards puzzles: 80% of participants stated that they enjoy the 
puzzles more, compared to 13% who enjoy the tutorials more, 
and 7% who enjoy both. This preference is also reflected in the 
TEQ motivation survey’s interest/enjoyment scale. Using a 
multilevel model, we found that participants rated the puzzles as 
significantly more enjoyable (M = 5.8, SD = 1.0) than the 
tutorials (M = 4.3, SD = 1.5), χ2(1) = 17.52, p < .001.  

In 48% of tasks, participants cited enjoying an animation as 
the reason for making a decision. In total 83% of participants 
made a decision that was based on whether or not they liked the 
animation. Participants cited the overall appeal of an animation: 
“Probably just because it looked like a fun animation to do.” 
Some participants also described specific attributes: “I liked 
how the alien kicked the spaceship to start it up and when it flew 
away.” The specific content presented via learning resources is 
an important attribute for children learning to program. 

2) Improve Programming Skills 
Participants made fewer decisions that prioritized improving 

their programming skills compared to their personal interests. 
When making decisions to improve their programming skills, 
they did so either directly, by seeking to acquire new 

programming skills or indirectly, by trying to gain a better 
understanding of their skill level or the instructional formats. 

A relatively small number of participants (37%) cited a goal 
of improving their programming skills across only 12% of tasks. 
This is a surprisingly low result given that we primed 
participants to make decisions to improve their skills. However, 
when participants did cite improving programming skills as a 
goal, they were more than twice as likely to have chosen a 
tutorial (19% of tasks) than a puzzle (7% of tasks). This 
difference seems to reflect a belief from users that they learn 
more using tutorials. When asked for the reason behind a tutorial 
decision, one participant explained, “Because it was a new skill 
that I hadn’t learned before, so if I did it as a puzzle I’d probably 
not quite understand exactly what it was trying to teach me.” 
This tendency to select tutorials when prioritizing learning is 
interesting because it does not reflect the results of a study 
comparing the two formats which found that puzzles were both 
more efficient and effective for learning new concepts [6].  

Choosing appropriate learning goals also requires both 
accurate knowledge of the available learning resources and 
knowledge of their own abilities. Participants described a variety 
of goals that contribute towards these types of self-knowledge. 
In 21% of tasks, participants described their desire to discover 
their skill level. Some attempted discovery by equally using both 
formats. One participant justified a decision as “Just so I can get 
a feel for both tutorials and puzzles.” Other participants talked 
about comparing the difficulty between the two formats: “I 
wanted it to be a little harder than the tutorial because I wanted 
to see if it’d make a big difference or not.” 

Participants’ responses indicate a strong preference towards 
enjoyment rather than improving skills. However, when 
attempting to improve their programming skills, their responses 
suggest a nuanced approach in which they explore what roles 
resources could play, assess their own skill level, and select 
resources that they believe could contribute towards that goal.  

3) Challenge 
Participants frequently cited challenge, pushing their 

abilities, as a factor in their decisions. Overall, 87% of 
participants sought challenge while 60% also avoided 
challenge. Plotting the expected difficulty of each instructional 
task for each participant, we observed fluctuation between easy 
and hard tasks for roughly 80% of participants. Of the remaining 
20%, 7% of participants consistently avoided challenge, and 
13% consistently sought challenge. This suggests that 
participants do not always want to work on the hardest task, they 
prefer a mix between challenging and non-challenging tasks. 

When seeking challenge, participants tended to select 
puzzles. Participants described seeking a challenge for 57% of 
the puzzles and 32% of the tutorials. When avoiding challenge, 
participants favored tutorials. In 39% of tutorial decisions and 
12% of puzzle decisions, participants expressed a desire to 
decrease the challenge level. This disparity suggests that 
participants perceived tutorials as being easier. The post-
interview provided further support for the perception that 
tutorials are easier. In each post-task interview we asked 
participants to rank the difficulty of their chosen instructional 
format from 1 to 9. Participants ranked puzzles as significantly 
more difficult (M = 4.8, SD = 1.9) than tutorials (M = 3.8, SD = 

TABLE II.  DECISION RATIONALE RESPONSE THEMES 

 
% of Tasks 

(Tutorials a, Puzzles a) 

% of Participants 

(Females, Males) 

Personal Preference 56% (52%, 58%) 87% (71%, 100%) 

Enjoyed Animation 48% (47%, 49%) 83% (71%, 94%) 

Liked Format 16% (8%, 20%) 53% (43%, 63%) 

Improve Programming Skills 32% (52%, 21%) 73% (79%, 69%) 

Improve Skill 12% (19%, 8%) 37% (36%, 38%) 

Discover Level 21% (34%, 13%) 53% (64%, 44%) 

Challenge 66% (65%, 68%) 100% (100%, 100%) 

Avoid Challenge 22% (39%, 12%) 60% (43%, 75%) 

Seek Challenge 48% (32%, 57%) 87% (93%, 81%) 

Other 17% (13%, 19%) 53% (36%, 69%) 

No Reason / Neutral 12% (13%, 11%) 40% (29%, 50%) 

Other 5% (0%, 8%) 27% (21%, 31%) 

a. Percent of sublabels for all tutorials/puzzles; not percent across all tasks. 



 

 

1.6), χ2(27) = 86.75, p < .001. Further, participants also never 
ranked a tutorial above a six, suggesting a difficulty ceiling for 
tutorials. Participants also reported significantly less 
pressure/tension in the TEQ motivation survey when using the 
tutorials (M = 1.9, SD = .9) compared to puzzles (M = 2.8, SD = 
1.1), χ2(1) = 10.46, p < .01.  

Participants’ desires to seek challenge were mostly 
straightforward: “I like having to challenge my mind more.” We 
saw two classes of reasons for avoiding challenge. The first 
group of participants expressed a desire to complete an 
animation they expected to be too challenging for them. These 
participants perceived tutorials as a more gentle introduction to 
the content required for a challenging animation. “I picked it as 
a tutorial because it looked like it had lots more complexity than 
the other ones and I didn’t want to just jump right in without 
knowing what I was doing.” The second group of participants 
avoided challenge after extending themselves outside of their 
comfort range. “I think I’m going to do mostly tutorials from 
now on because this was a bit hard.” 

While there is some variety in what participants perceived as 
too difficult, participants who gave up on a task before 
successfully completing it arguably felt that they had taken on 
too much. We note that this was relatively rare; it happened for 
8 of 167 total tasks. However, all eight of these tasks were 
puzzles. For these eight, participants uniformly went on to easier 
tasks afterwards. Six chose to complete a tutorial for their next 
task. The other two chose an easier puzzle. While the failed tasks 
are a more extreme situation, participants’ decisions to reduce 
the difficulty were consistent with the overall pattern of pushing 
a little bit and then scaling back. The presence of both puzzles 
and tutorials empowered participants to adjust the experience to 
meet their own learning and confidence needs. 

B. Expected Task Difficulty 

In the decision rationales section we saw that challenge was 
a prominent reason given for making a decision. When trying to 
manage challenge, participants considered a variety of 
information that informed their expectations about task 
difficulty (see Table III). Our results suggest that participants 
used appropriate factors for predicting task difficulty. 
Participants typically weighed several practical factors: their 
prior programming experience, their perception of the 
instructional format’s intrinsic difficulty, and the animation’s 
labeled difficulty. However, there is one factor that may hamper 
their ability to do this accurately: animation complexity. 

1) Programming Experience 
70% of participants considered their own programming 

experience when reasoning about difficulty. One participant 
expected a task to be easy “Because all of the skills in this one I 
had already learned.” An additional 10% of participants 
reasoned about code structure. Another participant expected a 
selected task to be difficult: “Because it was a new skill that I 
hadn’t learned and I’d have to figure out that you would have to 
put the Do in Order inside the Do Together with something 
outside of the Do in Order.” 

2) Instructional Format 
47% of participants based their expectations of difficulty on 

the instructional format. For example, one participant expected 
that, “The tutorial experience would be pretty easy.” Participants 
often stated that tutorials were easier “Because all you do is look 
at the tutorial, it tells you what to do, you do that, and then you 
turn the page and you do that again with the next instruction.” 

During the post-study interview, we asked participants to 
summarize their advice to potential new users about when they 
should use tutorials and puzzles. Their advice reiterates the 
theme of using the different instructional formats to manage 
challenge. 17% of participants stated that you should use a 
tutorial when you expect a task to be difficult. 13% of 
participants stated that you should use a puzzle when you want 
to challenge yourself. Lastly, 41% of participants thought that if 
something is new for you, you should do a tutorial first, and then 
practice with puzzles later.  

3) Labeled Difficulty 
Our task selection interface labeled all tasks with one of three 

difficulty labels: easier, medium, and harder. In 31% of tasks, 
participants based their expectations on these difficulty labels.  

4) Animation Complexity 
63% of participants stated that they expected a task to be 

easy or difficult based on watching the animation. One 
participant expected a task to be challenging “just because there 
was, I mean, it looked like there was lots of stuff happening.” In 
total, participants used animation complexity to inform their 
difficulty assessment in 23% of tasks. While this may be a 
natural thing to do, it creates an interesting tension. Participants 
often considered the appeal of an animation in selecting a task. 
Participants’ desire to complete a compelling animation creates 
an incentive to create more complex and visually interesting 
animations. However, the same push towards compelling 
animations may also lead users to perceive them as out of reach. 

C. Sources of Ease & Difficulty 

When making decisions, participants commonly used their 
generalizations about difficulty as discussed in the previous 
sections. However, in the post-task interviews participants 
identified what they believed to be the source of difficulty for 
that task. Participants’ expectations often aligned with their 
actual experience of difficulty. In this section, we discuss the 
elements that participants felt contributed to the ease or 
difficulty of completing tasks (see Table IV). Overall, 
participants identified fairly common sources of difficulty. 
Participants felt that the instructional format, their prior 
programming experience, the interface’s mechanics, and their 
own personal degree of struggle, were sources of task difficulty. 

TABLE III. EXPECTED TASK DIFFICULTY RESPONSE THEMES 

 
% of Tasks 

(Tutorials a, Puzzles a) 

% of Participants 

(Females, Males) 

Programming Experience 23% (21%, 24%) 77% (71%, 81%) 

Programming Experience 20% (19%, 21%) 70% (71%, 69%) 

Code Structure 2% (2%, 3%) 10% (0%, 19%) 

Instructional Format 14% (31%, 4%) 47% (50%, 44%) 

Labeled Difficulty 31% (21%, 36%) 67% (64%, 69%) 

Animation Complexity 23% (23%, 23%) 63% (71%, 56%) 

Other 16% (13%, 18%) 43% (50%, 38%) 

No Reason / Neutral 14% (10%, 17%) 40% (50%, 31%) 

Other 2% (3%, 1%) 10% (7%, 13%) 

a. Percent of sublabels for all tutorials/puzzles; not percent across all tasks. 



 

 

1) Instructional Format 
Unsurprisingly, 87% of participants cited the instructional 

format as a source of ease or difficulty. The responses here were 
consistent with the overall perception that tutorials are easier as 
we have noted elsewhere. 77% of participants identified tutorials 
as easy or difficult because of the format while only 43% said 
the same for puzzles. We note however, that 74% of these 
responses for tutorials are cited for being easy, whereas the 
responses for puzzles are spread across easy and difficult. 

2) Prior Experience & Barriers 
For many users, content familiarity made tasks easier and a 

lack of it created the potential for barriers. If a participant had 
prior experience with a programming concept, they tended to 
perceive it as easier, “It was much easier than I thought it was, 
just using the stuff that I had already learned.” In total, 60% of 
participants cited that their familiarity with a programming 
concept made that task easier for them. Participants’ experiences 
of difficulty based on their background were consistent with 
their background-based expectations of difficulty. In contrast, 
93% of participants cited a conceptual barrier, or not 
understanding a programming concept, as a source of difficulty 
in the tasks. One participant said that “Not knowing that it was 
actually possible to put Do in Order inside with Do Together” 
made a task difficult. Conceptual barriers are also strongly 
associated with puzzles. 87% of participants stated that a 
conceptual barrier caused them difficulty in puzzles, whereas 
only 23% of participants said the same for tutorials.  

We also saw a translation barrier, connecting a programming 
statement with its output, as a source of difficulty for 
participants working on puzzles. 13% of participants stated that 
the translation barrier was a source of difficulty for them.  

3) Mechanics 
30% of participants cited the instructional format’s 

mechanics as a cause for difficulty. In the tutorial, participants 
found watching and following the video difficult whereas in the 
puzzle, participants found watching the correct output difficult. 
Participants also found the programming environment’s 
mechanics difficult. In total, 57% of participants cited the 
mechanics of the programming environment as a source of 
difficulty. 

4) Degree of Struggle 
Lastly, participants cited their own perceptions as a source 

of ease and difficulty. These perceptions were often very self-
referential in nature: in essence, participants seemed to express 
“It was hard because I found it hard.” Some participants talked 
about “having to do it over and over and over and over again.” 
Others referenced the amount of time necessary to complete the 
task: “It was hard and long. It took me a really long time to do 
it.” In 18% of puzzles and 13% of tutorials, participants cited 
length as a source of ease or difficulty. Using a multilevel model, 
we noted that participants spent significantly longer on puzzles 
(M = 8.2, SD = 6.6 minutes) than tutorials (M = 7.92, SD = 4.6 
minutes), χ2(27) = 67.39, p < .001. Overall, 83% of participants 
explained their perception of difficulty through their own 
experience at least once during the study. 

D. Experience Outcomes 

Our final category, experience outcomes, explores the values 
that participants perceived while completing instructional tasks 
(see Table V). Participants received enjoyment from completing 
the tasks and also improved their programming skills. However, 
in many tasks participants were unable to state what outcome or 
benefit they received from completing the task. 

1) Enjoyment 
In the decision rationales section we noted that participants 

often made decisions based on their preference. When we asked 
participants in the post-task interviews what they got out of a 
task, one of the most common responses was that they simply 
enjoyed it. 63% of participants enjoyed the animation content, 
73% enjoyed working on the task, and 90% enjoyed completing 
the task. 83% and 53% of participants stated that they enjoyed 
puzzles and tutorials, respectively. The most interesting 
responses described struggling to complete the task and taking 
strong satisfaction from that success. As one participant said, 
“The more you struggle at something the more exciting it is 
when you finish it.” Echoing the other results, satisfaction from 
completing a task is a theme we saw more strongly with puzzles 
than tutorials. One possible explanation for the enjoyment 
disparity between puzzles and tutorials is that participants saw 
value in the freedom to solve the problem: “The best part was 
having to figure everything out.” Our TEQ results suggest that 
participants perceived more choice in the puzzles (M = 6.4, SD 
= .7) than the tutorials (M = 6.0, SD = .9), χ2(1) = 6.48, p < .05. 

TABLE IV.  SOURCES OF EASE & DIFFICULTY RESPONSE THEMES 

 
% of Tasks 

(Tutorials a, Puzzles a) 

% of Participants 

(Females, Males) 

Instructional Format 31% (58%, 15%) 87% (79%, 94%) 

Prior Experience & Barriers 55% (37%, 66%) 100% (100%, 100%) 

Prior Experience 23% (24%, 22%) 60% (50%, 69%) 

Conceptual Barrier 37% (15%, 51%) 93% (86%, 100%) 

Translation Barrier 2% (0%, 4%) 13% (7%, 19%) 

Mechanics 21% (29%, 16%) 63% (57%, 69%) 

Instructional Format 11% (10%, 11%) 30% (36%, 25%) 

Programming Environment 13% (24%, 6%) 57% (50%, 63%) 

Degree of Struggle 49% (32%, 59%) 90% (86%, 94%) 

My Experience 37% (21%, 47%) 83% (79%, 88%) 

Length 16% (13%, 18%) 57% (79%, 38%) 

Other 25% (26%, 25%) 73% (71%, 75%) 

No Reason / Neutral 25% (26%, 24%) 70% (71%, 69%) 

Other 1% (2%, 1%) 7% (0%, 13%) 

a. Percent of sublabels for all tutorials/puzzles; not percent across all tasks. 

TABLE V. EXPERIENCE OUTCOMES RESPONSE THEMES 

 
% of Tasks 

(Tutorials a, Puzzles a) 

% of Participants 

(Females, Males) 

Enjoyment 80% (79%, 80%) 97% (100%, 94%) 

Liked Animation 27% (27%, 27%) 63% (64%, 63%) 

Working on Task 26% (32%, 22%) 73% (71%, 75%) 

Finishing Task 50% (45%, 53%) 90% (86%, 94%) 

Improve Programming Skills 62% (61%, 63%) 97% (93%, 100%) 

Learned Skill 44% (50%, 40%) 87% (71%, 100%) 

Improved Competency 22% (23%, 21%) 63% (64%, 63%) 

Practice 34% (32%, 35%) 87% (86%, 88%) 

No Benefit 66% (71%, 64%) 97% (93%, 100%) 

Other 92% (100%, 87%) 100% (100%, 100%) 

No Reason / Neutral 87% (97%, 81%) 100% (100%, 100%) 

Other 35% (44%, 31%) 87% (86%, 88%) 

a. Percent of sublabels for all tutorials/puzzles; not percent across all tasks. 



 

 

2) Improve Programming Skills 
Participants stated improving their programming skills as an 

outcome. We note that this may be due in part to our priming to 
prioritize learning. Participants often distinguished between 
three concepts: learning, general competency, and practice.  

When participants talked about learning, they focused on 
their introduction to a new concept or programming element. 
Overall, 87% of participants stated they learned a specific 
programming skill from completing a task. 70% of participants 
reported they learned new programming skills from the puzzles, 
compared to 60% of participants who reported the same for 
tutorials. This contrasts with participants’ stated decisions 
around learning, where we found that they tended to select 
tutorials when citing a learning goal (see section V.A.2). 63% of 
participants reported improved computing competency. While 
87% of participants also reported finding value in practicing 
using the instructional tasks. As one participant stated, “I 
enjoyed it. It was fun to practice on my own with the skills that 
I had just learned.” 70% of participants reported that the puzzles 
helped them reinforce their skills, compared to just 50% of 
participants who said the same thing about tutorials. 

We compared the reported programming experience from 
the pre-study and post-study interviews: 80% of participants felt 
more competent after completing the study, 17% reported no 
change, and a single participant reported feeling less competent. 

3) No Benefit 
In 66% of tasks participants responded to some interview 

questions that they did not benefit from the task. In most cases, 
this was in response to a question about what specific 
programming knowledge did they learn from the task. Recall 
that in only 44% of tasks was learning a specific skill cited. 
Frequently, participants did not know what they had just learned. 
Many recognized that the task was useful (i.e. practice) but could 
not name a specific programming concept that they had learned. 

VI. DISCUSSION 

Below we discuss the implications this work has for novice 
programming environments. 

A. Choice & Motivation 

While direct evidence of learning suggests that puzzles are a 
better choice than tutorials [6], participants saw value in both 
formats beyond improving their skills. This is an exciting result 
that suggests that since participants primarily care about 
animation choice and balancing difficulty, we should consider 
providing multiple formats with a range of scaffolding that 
enables users to obtain adequate support while perusing their 
interests. This might include traditional formats like tutorials 
and puzzles. But it could also include formats designed for open-
ended situations like remixing code [25], [35] or providing hints 
or suggestions while users work on their own projects [36], [37]. 
This would empower users to improve their skills while making 
decisions based on their own goals. 

B. Challenge 

In this study, almost every participant made a decision where 
they were seeking challenge. Given the prevalence of this 
decision rationale, we encourage novice programming 
environment developers to specifically seek out avenues to 

enable their users to challenge themselves. Additionally, based 
on the challenge fluctuation we saw in the study, we suggest that 
novice programming environments provide mechanisms to 
allow users to alternate between easy and challenging tasks. 

C. Learning 

A majority of participants made a decision based on trying 
to discover which tasks were appropriate for their skill level. 
Because this rationale appears to be both important for users and 
commonplace, programming environment designers should 
consider ways that enable participants to explore their abilities. 
We observed that in several MOOCs and puzzle-like systems, 
users are not allowed to progress until they have finished the 
current lesson or level. Our result suggests that designers of 
these systems should give users the choice and the freedom to 
choose their own tasks, even if they may not be ready for them. 
This comes with its own risk; users may feel discouraged after 
failing to complete a task. However, as we observed in this 
study, many of the participants who failed to complete a puzzle 
were driven to discover their mistake by using another 
instructional format or by selecting an easier task. 

VII. THREATS TO VALIDITY  

In this study we used a semi-structured interview that we 
specifically geared towards learning programming. We also 
primed participants to improve their programming skills. Our 
specific focus on learning may skew our results away from other 
factors that also affect decisions and perceptions of value. 
However, even when we explicitly encouraged participants to 
prioritize learning, participants were more likely to make their 
decisions based on their preferences and desire for challenge. 

This study sought to identify the perceptions of value that 
novice programmers see in two specific instructional formats. 
While the specifics of these perceptions may not hold to other 
formats, our general conclusions about the factors that 
participants feel are important, like challenge, will likely hold 
for other instructional formats. However, outside of middle 
school children, these results would likely differ for other 
demographics, like expert programmers. We also note that 
participants with a stronger interest in programming may have 
self-selected to participate in this study. 

VIII. CONCLUSION 

In this paper, we presented a qualitative study investigating 
which instructional formats users preferred and why they chose 
to use them. We discovered that enjoyment, challenge, and 
perceived value all play important roles in a user’s decision to 
choose between instructional formats. We hope that this data can 
help inform improvements to novice programming 
environments that further advance their independent learning 
capabilities. We hope that with these decision factors identified, 
empirical results will soon follow which demonstrate whether 
these factors are helpful to our ultimate goal of helping novices 
learn programming independently.  
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