

Enabling Independent Learning of Programming

Concepts through Programming Completion Puzzles

Kyle J. Harms, Noah Rowlett, Caitlin Kelleher

Department of Computer Science & Engineering

Washington University in St. Louis

St. Louis, Missouri, United States

{kyle.harms, noah, ckelleher}@wustl.edu

Abstract—Many novice programming environments use

puzzle-like approaches to help novice programmers acquire new

programming skills independently. Yet, little is known about 1)

how puzzles can support effective learning of programming skills

and 2) how learning programming using a puzzle-based approach

compares to more a traditional tutorial style approach. We

conducted a pair of studies to explore these two questions. First,

we report lessons learned on the design of programming

completion puzzles, their interface within a novice programming

environment, and the design of a puzzle curriculum drawn from

our first, formative study. We then report on a second study that

compared the learning effectiveness of programming puzzles and

tutorials. The results suggest that puzzles are a promising

approach for introducing programming concepts within novice

programming environments. Puzzle users performed 26% better

on transfer tasks compared to tutorial users, while taking 23% less

time to complete the learning materials.

Keywords—novice programming; independent learning;

programming puzzles; completion problems, completion strategy

I. INTRODUCTION

Opportunities to learn computer programming in formal
educational settings are limited for many people, especially in
grades K-12. In response, educators and researchers have
created programming environments that can be used in informal
settings [1]–[3]. Since classroom opportunities are limited, these
systems often include resources designed to help users learn on
their own. One of the challenges in creating these learning
resources is that they must support users in learning both the user
interface mechanics and programming concepts.

Traditionally, novice programming environments have often
attempted to support independent learning using tutorials [4]–
[6]. Much of the research on tutorials has focused on improving
successful completion by guiding users through a series of steps
while minimizing errors [7]–[9]. While completing tutorials
may help with user interface mechanics, it is not clear how well
novice programmers learn programming concepts via tutorials.

More recently, some programming environments have
begun to use a more puzzle-like approach to facilitate
independent learning [2], [10]–[12]. Often these environments
present some type of challenge with code pieces and encourage
users to solve the challenge using the code pieces. While the
specific inspirations for many of these environments’ puzzle-
like approaches are unclear, the methods are similar to Van
Merriënboer’s programming completion strategy [13].

Van Merriënboer demonstrated that high school students
who practiced programming by completing partial programs
were later able to construct better programs than students who
practiced by writing programs from scratch [14]. Completing a
partial problem is known as the completion strategy or as a
completion problem [14], [15]. Completion problems are
partially worked examples that require a user to complete the
remaining key steps [16]. The completion strategy has also been
found effective in other educational domains [15], [17]. We
hypothesize that programming puzzles can also leverage the
completion strategy and consequently better support the learning
of programming concepts.

Researchers have also proposed the use of programming
puzzles to support learning [10], [18], [19]. However, we are
unaware of any work that empirically evaluates the effectiveness
of programming puzzles to support independent learning.

In this paper, we present our work developing programming
completion puzzles that facilitate learning for middle school
children. Specifically, we iteratively developed and tested a
puzzle interface and curriculum within a blocks-based
programming environment. We report our lessons learned on
how to construct both the interface support and curriculum to
encourage learning. We then compare the learning effectiveness
of tutorials and puzzles on a set of four programming concepts.
Participants who learned using programming puzzles spent 23%
less time in the learning phase and performed 26% better on
transfer tasks than participants who learned using tutorials.

II. RELATED WORK

Prior work has investigated tutorials, tutors, and puzzle-like
programming environments. We discuss how prior work
supports learning independently in the context of programming.

A. Tutorials

Prior research has mostly investigated improving tutorial
presentation and mechanics. Tutorial presentation can take the
form of static text [20], pictures [21], or video [8], [22] or can
even be interactive [5]–[7], [9], [23]. Generally, these systems
have focused on improving tutorial completion by providing
additional scaffolding or support by using videos [22], onscreen
annotations [7], [9], synchronizing user progress with the
tutorial [7], [8], [23], or viewing other users’ tutorial experiences
[24]. Some researchers have used gamification to help motivate
users to complete tutorials [25], [26]. Researchers also found
that reconstructing code via a tutorial enabled users to perform

better on transfer tasks than directly inserting the code [5].
Beyond this, it is unclear how well tutorials will perform when
teaching beyond mechanics.

B. Tutors

Unlike tutorials, programming tutors typically focus on
providing students with programming practice alongside
classroom instruction. During practice, many programming
tutors focus on helping identify student programming errors
[27]–[30]. Further, cognitive tutors [31] and intelligent tutoring
systems [27] try to provide sufficient practice by modeling
students’ knowledge and suggesting additional practice for un-
mastered concepts. These types of tutors have been found to be
effective with classroom instruction [32].

Outside of the classroom, online tutors try to provide a
classroom-like experience [33], [34]. However, many students
often start but fail to finish online instruction [35]. It is not clear
whether or not systems designed to complement the classroom
or for extra practice are effective when used alone.

C. Puzzle-Like Systems

Puzzle-like systems frequently present some form of
problem and require users to formulate a solution to solve that
problem [36]. In the context of programming, many puzzle
systems give users an objective that requires them to program an
object’s path through obstacles on a grid [2], [10], [37]–[39].
Frequently, puzzle-like programming environments use tutorials
as part of their initial user experience [2], [10], [37], [38].
Introductory tutorials typically take the form of tutorial levels
that introduce the puzzle’s mechanics. To encourage learning,
some systems use debugging [10] or competition [40], [41].
However, beyond these few systems many puzzle-like systems
simply appear to encourage learning through some form of the
completion strategy [13] including CORT [18] and Parson’s
puzzles [19]. We are not aware of any work that explores the
learning effectiveness of programming puzzles.

III. FORMATIVE EVALUATION

We broke our formative work into two parts: 1) designing
the programming puzzles format and interface, and 2) creating a
programming puzzle curriculum.

A. Programming Puzzle Format & Interface

We chose to implement our programming completion
puzzles within the novice programming environment, Looking
Glass [3]. Looking Glass is a blocks-based programming
environment that enables users to author 3D animated stories by
dragging and dropping program statement tiles. When executed,
programs in Looking Glass are 3D animations.

We designed the puzzle format and interface through ten
iterations of formative testing. We conducted our formative
testing with 23 users between the ages of 10 and 15 years at the
St. Louis Science Center. Each session lasted 30 minutes. We
compensated participants with a $5 gift certificate.

We used a variety of methods to iteratively design and
develop our puzzle format and interface. Our methods included
mockups, paper prototyping, Wizard of Oz testing, and working
prototypes.

See Fig. 1 for our final puzzle interface. Users complete the
puzzles by dragging statements from the unused statement bin
(Fig. 1.A) into the puzzle workspace (Fig. 1.B). Users must use
all of the statements in the bin to complete the puzzle. If users
need to view the correct program output or view the puzzle’s
output, they click the appropriate play button (Fig. 1.D). This
brings up the program output overlay pane (Fig. 1.E). When the
user is viewing the puzzle output, the puzzle correctness
indicator (Fig. 1.F) will show the user’s current progress. The
puzzle is correct, when all of the indicator’s dots are green.

B. Puzzle Format & Interface Lessons Learned

We share some of the features of our puzzle interface and
lessons learned in developing an effective puzzle format that
facilitates independent learning.

Fig. 1. Our programming completion puzzle interface. Users drag statements from the unused puzzle statements bin (A) into the puzzle workspace (B). (C) shows
the initial starting state of the program. Users view the correct program output or their puzzle output by clicking the appropriate play button (D) which brings up

the program output overlay (E). When viewing the puzzle’s output users receive feedback on their progress from the correctness indicator (F).

1) Only show the user’s work in the program’s output.
Initially, we attempted to implement the completion strategy

for programming by taking a complete program and scrambling
the order of all the statements. Using a typical (drag-n-drop)
block-based code editor, users would then only need to reorder
the statements into the correct order to complete the puzzle.
Through testing, we realized that when participants viewed the
program’s output, the output showed both the parts of the
program that the user had reordered and the parts that they had
not yet reordered. Mixing both elements in the output made it
impossible for users to tell where their changes ended and where
the scrambled code began.

To address this we switched from the reorder strategy to the
place-in-order strategy. Users now place the statements in the
correct order by dragging the unused statements from a bin and
placing them into the correct order in the puzzle workspace. This
ensures that only the work that the user has completed is shown
in the program’s output.

2) Limit the editable dimensions of the puzzle.
During our early testing using the reorder strategy, we found

that users changed the code beyond reordering the statements.
In a typical code editor, a programmer can change the code in
several dimensions: she may add new statements, and edit,
move, or delete existing statements. Early in our formative
testing, we discovered that using a code editor gives users too
many dimensions to manipulate. When everything in a puzzle is
editable, the user thinks they need to change all of these
dimensions. Many editable dimensions can make these puzzles
extremely difficult to complete successfully. In our final
version, we limited editing the puzzles to moving statements.
Increasing the number of dimensions may provide later
opportunities for increasing puzzle difficulty.

3) When executing a program, limit distractions and focus

the user’s attention on the program’s output.
To complete a programming puzzle, a user needs to know

what the correct output looks like and how it compares to the
puzzle’s output. We initially tried allowing users to execute and
view both the correct output and the puzzle output side-by-side.
Unfortunately, users spent most of their time looking back and
forth between both outputs, missing key moments. Any
distractions, including looking at the actual code, caused users
to miss important details in the program output that would help
them to complete the puzzle. We focus the user’s attention by
solely showing the output in an overlay pane that obscures the
actual code as shown in Fig. 1.E. Users can view the correct
output or the puzzle output, but not both at the same time.
Without distractions, the user can carefully study the nuances of
program’s behavior and later tie the behavior to the appropriate
puzzle statements.

4) Provide the user with ambiguous and incremental

feedback towards the puzzle’s solution.
When using the typical code editor for the puzzles, the user

only received a notification that the puzzle was complete once
every statement was in the correct order. Prior to receiving this
notification, many participants believed they had correctly
completed the puzzle, leading many to terminate the puzzle
prematurely. We developed and tested several incremental
progress indicators to provide feedback throughout puzzle

editing. Unfortunately, early versions were easy to game;
participants noticed they could quickly rearrange the statements
until the progress bar increased without actually having to try to
complete the puzzle. To limit this type of behavior and to
encourage engagement, we increased the ambiguity within our
feedback indicator. We increased the ambiguity by reducing the
ability for users to make a direct mapping between the code and
the progress indicator.

Fig. 1.F shows our final incremental and ambiguous progress
indicator. Throughout our formative testing, all users used a top-
down approach to solve the puzzles. Our progress indicator is
designed to provide feedback for the first error in the puzzle,
which supports this top-down approach. This indicator shows a
new dot each time a statement is executed. A green dot means
that the currently executing statement is correct. However, when
the first incorrect statement in the puzzle (the fly above method
in Fig. 1) is executed a new orange dot is added. Any executing
statements that follow the incorrect statement are added as gray
dots. For additional ambiguity, we group all similarly colored
dots together; all green dots are grouped together, followed by
all orange dots, and then the gray dots. Through testing, we
found that this feedback mechanism seems to strike the right
balance between incremental and ambiguous feedback.

C. Programming Puzzle Curriculum

After developing the puzzle format and interface, we then
moved to creating the actual content for the programming
completion puzzles. We based our puzzle curriculum on
concepts found in the middle school level (2) of the Computer
Science Teacher’s Association’s curricular standards [42]. We
selected four concepts at the introductory level that are useful
for authoring 3D animations: repeated execution (Repeat),
parallel execution (Do Together), parallel nested within repeated
execution, and repeated nested within parallel execution.

We recruited 21 participants between the ages of 10 and 15
years from the Academy of Science of St. Louis mailing list.
Each session lasted 90 minutes. Afterwards, we compensated
participants with a $10 gift certificate.

We created eight iterations of our puzzle curriculum with the
final version containing six puzzles. See Table I for the puzzle
curriculum. We designed the puzzles to expose users to the four
new concepts and vary in difficulty to help keep users engaged.
Fig. 1 shows a partially completed puzzle for lesson 4.

D. Curriculum Lessons Learned

In the following section, we discuss some of the lessons we
learned while creating our puzzle curriculum.

1) Author puzzle programs with motivating scenarios.
Completion problems are often described as partial worked

examples [16] and so we initially created our early puzzles to be

TABLE I. PROGRAMMING PUZZLE CURRICULUM

ID Programming Concept Difficulty No. Statements

1 Sequential execution Easy 7

2 Repeated execution Challenging 10

3 Parallel execution Challenging 9

4 Repeated & Parallel Easy 9

5 Parallel{ Repeated } Challenging 8

6 Repeated{ Parallel } Challenging 10

examples more focused on demonstrating concept behavior.
However, this resulted in puzzles that users did not find
compelling. For example, users frequently lacked the motivation
to complete our initial repeat puzzle that simply had an object
move up and down three times. From informal interviews, we
realized that we needed to provide users with puzzles that
excited them.

One approach we found that motivated users was to author
puzzles with a problem-solution scenario. These puzzles contain
a compelling initial scene with a scenario that contains a
problem and resolution. For example, the puzzle in Fig. 1 shows
a initial scene of an alien on a planet. After viewing the correct
output, users realize that they have to help the alien leave the
planet by repairing his broken spaceship. Users are motivated to
finish the puzzle in order to help the alien escape the planet.

2) Author puzzle programs with memorable segments.
We found during testing that if an animation or part of an

animation was not memorable, then users had to continuously
flip between the correct output and puzzle output to know what
to work on next. To limit this thrashing, a user should be able to
remember the part of the puzzle they are working on without the
need to continuously review the correct output. A simple
approach is to author puzzle programs so that there are
memorable segments. The alien example above contains three
memorable segments: the alien fixing the broken spaceship, the
alien entering the spaceship, and the spaceship leaving the
planet. We also suggest using exaggerated or over-the-top
animations which can be easier to remember.

3) Provide a challenge without being tricky.
Over the course of our formative sessions, we found that

participants sometimes had very different reactions to difficult
puzzles. In some cases, completing a difficult puzzle was a very
rewarding experience. In others, participants remained
frustrated, even after finding the correct solution. Participants’
descriptions of these puzzles reflect these two kinds of reactions.
Participants often described rewarding puzzles as challenging
and frustrating puzzles as tricky. Through examining a
collection of tricky and challenging puzzles, we noticed that
what differentiates these puzzles is the source of their difficulty.

Tricky puzzles pull users’ mental resources away from the
puzzle’s programming concept and instead expend their
resources on extraneous details. Frequently, these extraneous
details require participants to observe subtle details in the
animation or notice subtle differences between statements. For
example, an early puzzle included small rotations of a
character’s joint that participants struggled to perceive when
viewing the puzzle output. In another case, a puzzle included
nearly identical statements, one moved 1.0 meters and the other
1.2 meters. Participants frequently swapped these two
statements in the puzzle and perceived the resulting output as
matching the correct one. While participants typically solve
tricky puzzles, they often finish with a sense that they have
wasted a lot of time on unimportant details.

In contrast, we found that users really enjoyed challenging
puzzles. Frequently, users commented that they liked the
challenging puzzles best, “I thought this one was a little
challenging, but I liked it!” The source of difficulty in
challenging puzzles was the puzzle’s new programming

concept. These puzzles were still difficult for users, but this type
of difficulty feels authentic because users finish with a new skill;
spending time on it feels justified.

However, we note that too many challenging puzzles can be
overwhelming for users. During one formative testing session,
we replaced all of our easy puzzles with challenging ones. In this
session, users no longer enjoyed the puzzles. Providing
difficulty variation between different puzzles seemed to result in
the best user experience.

4) Leave the users with a positive impression.
The last few statements of a puzzle leave a lasting

impression on users. Frequently, when users recall their whole
experience completing a task, their experience is shaped by the
end experience of the task [43]. Even though users enjoy the
challenging aspects of puzzles, we end all puzzles with easier
statements. Not only does the user feel like they had a rewarding
experience due to accomplishing the challenging portion, but
they also walk away from the puzzle with a confidence boost.
We believe this helps motivate users, as noted by some users, “I
just wanna do puzzles!”

IV. SUMMATIVE EVALUATION

After our formative evaluation, we conducted a between
subjects evaluation to assess the effectiveness of learning new
programming concepts with programming puzzles compared to
tutorials. After conducting a literature review of current widely-
used novice programming systems, we observed that several
offered the option to also use some form of tutorial [1], [2], [10].
We primarily based our tutorial condition on Scratch’s step-by-
step video and text tutorials [1].

See Fig. 2 for our implementation of these tutorials. Every
step in the tutorial instructs the user to insert a statement into
their program. For each step there is a looping screencast video
showing how to complete the step as well as text directions
instructing the user what statement they need to insert.

From our evaluation, we intended to answer the following
questions: 1) Do puzzles require a different time and mental

Fig. 2. The tutorial condition. The tutorial window (A) shows a video and text

description of each step. Users complete the step in the programming editor (B)
and then manually advance the tutorial (C).

investment than tutorials? 2) Are puzzles more motivating than
tutorials? and 3) Do puzzle users show more evidence of
learning than tutorial users?

A. Participants

We recruited 34 participants between the ages of 10 and 15
for two separate experiments that lasted two hours. This paper
presents only the first experiment. We recruited participants
through the Academy of Science of St. Louis mailing list. The
Academy of Science is a not-for-profit organization dedicated to
science outreach within the St. Louis metropolitan area. This
mailing list is well known by community members and was
further forwarded around local schools and other groups.

We screened participants for minimal (less than 3 hours
total) programming experience. Upon arriving to the study
location, we interviewed all participants for prior programming
experience. We removed 7 participants due to screening failures
discovered during the interviews. With screening failures
removed, we analyzed the data for 27 participants (gender: 12
female, 15 male; age: M = 11.59, SD = 1.60). We compensated
participants with a $10 gift certificate.

B. Materials

We developed programs and survey materials that
participants used during training and transfer study phases.

1) Familiarization Tasks
For each study phase, we developed a phase familiarization

task. The familiarization task introduced participants to the
format of the tasks for the phase and also introduced participants
to the interface mechanics of the programming environment.
Each task’s format was identical to the training or transfer tasks.

2) Training Tasks
We used the puzzles developed during our formative testing

for the content of our six training tasks. For our puzzle condition,
we used the puzzles in their original form. However, for the
tutorial condition we authored tutorials that produced the same
programs as the puzzles but within a typical code editor.

3) Transfer Tasks
To measure learning, we wanted to know if given a novel

problem, can users identify and correctly use the programming
constructs needed to solve that problem. In response, we
developed four transfer tasks, one for each of the challenging
programming concepts introduced in our curriculum (See Table
I). We asked participants to complete the transfer tasks in a
typical code editor.

The transfer tasks are complete programs that contain
correctly ordered method invocations along with a description
and video of the correct program output. Each program is
missing the required control flow constructs necessary to create
the desired output. To complete a transfer task a user must 1)
determine the appropriate constructs, 2) locate the constructs
within the programming environment, and 3) drag the construct
blocks into the existing code and move the appropriate
statements into the construct blocks. No additional method
invocations are necessary to complete these tasks. This setup is
intended to allow participants to spend their time demonstrating
their mastery of the programming concepts rather than writing
entire programs from scratch.

4) Surveys
We used two surveys for our evaluation: a self-developed

task survey and the Intrinsic Motivation Inventory’s Task
Evaluation Questionnaire (TEQ). The TEQ is a 22 Likert scale
item questionnaire with four subscales: interest/enjoyment,
perceived competence, perceived choice, and pressure tension
[44]. Participants rate each item on a scale from 1 - not true at
all, to 7 - very true.

Our task survey was comprised of a multiple-choice question
and five Likert scale items: a mental effort scale and four
enjoyment scales. The mental effort survey is a well validated
and reliable unidimensional scale from 1 - extremely easy (very,
very low mental effort), to 9 - extremely difficult (very, very
high mental effort) [45], [46]. The perceived enjoyment scale
contains four, seven item Likert scale items: enjoyable –
unenjoyable, exciting – dull, pleasant – unpleasant, interesting –
boring [47], [48]. Lastly, we included the again again table,
which asks participants whether they would like to do this
activity again with the following choices: yes, maybe, no [49].

C. Methods

We conducted our evaluation with four multi-user sessions.
Each participant attended one of the two-hour sessions. Even
though multiple participants attended each session, each
participant worked independently. The study took place in a
typical computer lab environment. We seated participants to
minimize viewing other participants’ screens.

 We randomly assigned the participants to the puzzle or
tutorial condition (puzzle: 14, tutorial: 13). Participants first
completed the training phase followed by the transfer phase.
Following the transfer phase, the participants completed a
separate experiment (not presented). After completion of the
separate experiment, participants were free to author their own
programs. See Fig. 3 for an overview of the basic study
procedure for this experiment.

1) Training Phase
The training phase consisted of the following activities: the

familiarization task, six training tasks with task surveys,
followed by the TEQ survey. We gave participants a maximum
of 7 minutes to finish the familiarization task and each training
task. Following each task, we asked participants to complete a
task survey. During our pilot studies, almost all participants
completed each task within 7 minutes (this is roughly the mean
plus a standard deviation). We allowed participants to ask any
questions during the familiarization task. We also helped
participants complete the familiarization task if they needed
assistance with the directions or interface mechanics. For the

Fig. 3. Overview of the basic summative evaluation procedure.

actual training tasks, participants were not allowed to ask
questions and worked independently.

Once participants completed the familiarization task, they
were given the six training tasks in the curriculum order. Based
on the participant’s condition they completed all tasks using
either the puzzles or tutorials. Following each training task,
participants completed the task survey. After completing all
training tasks, we asked participants to complete the TEQ.

2) Transfer Phase
The transfer phase consisted of the familiarization task and

four transfer tasks with task surveys. We gave participants a
maximum of 6 minutes to complete the familiarization and all
transfer tasks. After each task, we asked participants to complete
the task survey. We used a Latin squares design to administer
the transfer tasks to control for learning effects. Like the training
phase, we assisted participants if necessary during the
familiarization task; we provided no assistance for the four
transfer tasks. After each transfer task, we asked participants to
complete the task survey.

V. ANALYSIS

We collected log data from all tasks, scored the transfer tasks
and analyzed the surveys.

A. Log Data

We gathered timing, event data, and code edits from the logs.

B. Transfer Task Scoring

We developed a grading rubric for each of the transfer
programs based on the prior work of Harms et al. [5]. Using the
rubric, we assigned a numerical score to each transfer task. For
every transfer task, roughly three fourths of the points were
dedicated to correct usage of the programming concept. When
assigning points, we gave each attribute of the programming
construct one point. The remaining points were assigned for
carefully following the directions so that the program’s output
was identical to the correct output.

See Table II for a partial example of the scoring for a repeat
statement in the repeat transfer task. The last two criterion: no
additional statements and animation is correct, may seem
identical, however they capture different attributes. Some
participants will not use the repeat block and instead insert
duplicate code statements. In this situation, the animation is
correct, but solution is not (total score: 1 point).

We carefully designed each transfer program rubric to assign
credit for each attribute once. Not all tasks have multiple
solutions like the repeat task. For example, when evaluating the
parallel transfer task, we gave a single point for correctly using
a parallel construct and for having a correct animation. For this

task, the user must use a parallel Do Together block; no other
solutions exist to produce a correct animation without using the
parallel construct.

C. Task Surveys

We analyzed the results for the mental effort scale, the four
perceived enjoyment scales, and the again again table.

D. TEQ Survey

The interest/enjoyment and perceived competence subscales
of the TEQ are reliable, Cronbach’s α = .91, .72 respectively.
The subscales for perceived choice (Cronbach’s α = .58) and
pressure/tension (Cronbach’s α = .62) are not reliable. We have
only included the interest/enjoyment and perceived competence
subscales in our analysis.

VI. RESULTS

In this section, we address the results of our evaluation in
terms of answering our research questions.

A. Do puzzles require a different time and mental investment

than tutorials?

We looked at time and mental investment by examining
three factors from the training phase data: time, mental effort,
and exposure to the programming concept. We wanted to know
if there was any difference in completion time between the
conditions. We also wanted to know if puzzles required more
mental effort than tutorials and if puzzles exposed users to the
appropriate concepts at the same rate as tutorials. We found that
puzzle participants overall took 23% less time, required 50%
more mental effort, and were exposed to programming concepts
equivalently to tutorial participants.

1) Puzzle and Tutorial Task Time
Overall puzzle participants spent 23% less time completing

the puzzles compared to the tutorial participants. See Table III
for training task time for the puzzle and tutorial conditions. We
conducted a MANOVA using Wilk’s lambda statistic. There
was a significant effect of condition (puzzle or tutorial) on the
training task time, Λ = .25, F(6, 20) = 9.90, p < .001. However,
separate univariate ANOVAs revealed that this effect was only
significant for the sequential (1) F(1, 25) = 41.44, p < .001, the
parallel (3) F(1, 25) = 15.72, p < .001, and the repeated &
parallel (4) F(1, 25) = 8.76, p < .01 tasks. There was no
significant difference for the repeated (2) F(1, 25) = 0.19, p =
.67, the parallel with nested repeat (5) F(1, 25) = 2.45, p = .13,
and the repeat with nested parallel (6) F(1, 25) = 0.37, p = .55
tasks. The total time participants spent completing all training
tasks for the puzzle (M = 21.89, SD = 6.05) compared to the
tutorial (M = 28.31, SD = 5.05) was also significant t(24.73) =
3.00, p < .01.

We were curious why some training tasks took less time for
the puzzles, but not all. We hypothesized that puzzle difficulty
and longer program execution due to loops might be a factor.
We observed that all of the non-significant training tasks (2, 5,
and 6) all contained repeated execution and were all rated
difficult. Difficult puzzles require users to continuously iterate
and check their work many times since the solution is not
immediately obvious to them. In contrast, tutorial users were led
through the correct assembly of the programs and did not need

TABLE II. TRANSFER TASK SCORING EXAMPLE

Scoring Rubric Points

Has repeat block. 1

Repeat has correct index. 1

Correct statements inside of repeat. 1

No additional statements inserted. 1

The animation is correct. 1

Total 5

to continuously check the output to validate their work.
Repeated execution would also cause the program execution
time to increase. Typically, each executing statement in Looking
Glass takes one second to execute. We note however, that the
number of statements for the training programs was relatively
consistent as shown in Table I.

For all of the challenging tasks (2, 3, 5, and 6) puzzle users
spent significantly more time executing their program than
tutorial users. There was a significant effect of condition (puzzle
or tutorial) on the program execution time, Λ = .50, F(6, 20) =
3.48, p < .05. Separate univariate ANOVAs revealed this was
significant for tasks (2) F(1, 25) = 18.07, p < .001, (3) F(1, 25)
= 6.23, p < .05, (5) F(1, 25) = 7.52, p < .05, and (6) F(1, 25) =
11.59, p < .01. Yet, of tasks 2, 3, 5, and 6, task 3 is the only task
that does not contain a loop. We think this suggests that the extra
time puzzles users spent in tasks 2, 5, and 6 is may be due to the
extra time necessary to execute and view the output of the loops.

2) Puzzle and Tutorial Mental Effort
Puzzle participants rated the challenging tasks as requiring

more mental effort than the tutorial participants. We conducted
a MANOVA using Wilk’s lambda statistic, there was a
significant effect of condition on the mental effort rating, Λ =
.49, F(6, 20) = 3.47, p < .05. Separate univariate ANOVAs
revealed that this was significant for all the challenging tasks,
(2) F(1, 25) = 13.49, p < .01, (3) F(1, 25) = 6.26, p < .05, (5)
F(1, 25) = 6.30, p < .05, and (6) F(1, 25) = 4.87, p < .05.
However, it was not significant for the easy tasks, (1) F(1, 25) =
.22, p = .64 and (4) F(1, 25) = 2.32, p = .14.

3) Puzzle and Tutorial Concept Exposure
Participants were exposed approximately equally to the new

programming concepts regardless of whether they used tutorials
or puzzles during the training tasks. When completing a puzzle,
participants may not have discovered the correct solution and
thus lacked exposure to the programming concept. If a tutorial
user failed to complete the tutorial correctly, they may also have
lacked exposure. To measure concept exposure we analyzed
each participant’s training tasks to see if at some point during
the puzzle or tutorial the code was in a state where the desired
programming concept was correctly demonstrated. See Table III
for the exposure rates for the puzzle and tutorials conditions.
There are no significant differences between the conditions and
exposure for all tasks: (1) χ2(1) = .04, p = .85, (2) χ2(1) = 0, p =
1, (3) χ2(1) = .04, p = .85, (4) χ2(1) = .04, p = .85, (5) χ2(1) = 0,
p = 1, and (6) χ2(1) = .21, p =.64.

B. Are puzzles more motivating than tutorials?

We used the training tasks surveys and the TEQ to help us
determine whether the puzzles are more motivating than

tutorials. We found no significant effects for these measures
between the puzzle and tutorial conditions suggesting no
difference in motivation between the conditions.

The TEQ showed no significant changes between the
conditions. For the TEQ interest/enjoyment subscale (1 = not
true, 7 = very true), the puzzle (M = 5.55, SD = 1.03) and tutorial
(M = 5.64, SD = 1.42), participants rated that they enjoyed their
experience. For the perceived competence subscale, the puzzle
(M = 5.19, SD = .87) and tutorial (M = 5.94, SD = .94)
participants also rated that they felt competent. We conducted a
MANOVA using Wilk’s lambda statistic. There was no effect
of condition on the interest/enjoyment and perceived
competence subscales Λ = .84, F(2, 24) = 2.34, p = .12.

The training task surveys showed no differences between
conditions. Participants in both conditions rated each task as
enjoyable, exciting, pleasant, and interesting. They also rated
that they would like to do the task again. For the perceived
enjoyment survey we conducted a MANOVA using Wilk’s
lambda statistic for the effect of condition on the scales:
enjoyable – unenjoyable Λ = .79, F(6, 20) = .91, p = .51, exciting
– dull Λ = .55, F(6, 20) = 2.78, p < .05, pleasant – unpleasant Λ
= .72, F(6, 20) = 1.32, p = .30, and interesting – boring Λ = .67,
F(6, 20) = 1.67, p = .18. The exciting – dull scale was the only
significant scale, however, separate univariate ANOVAs
revealed no differences between the conditions. The again again
table also revealed similar non-significant results, Λ = .85, F(6,
20) = .59, p = .74. These results suggest that puzzles are no more
or less motivating that tutorials. However, we note that these
results do not align with our formative evaluation observations;
we discuss this further in the discussion section.

C. Do puzzle users show more evidence of learning than

tutorial users?

Lastly, we wanted to know whether users learn
programming concepts more effectively using puzzles or
tutorials. Overall, we found that puzzle participants performed
26% better on the transfer tasks, required equivalent mental
effort to complete the transfer tasks, and took 23% less time than
tutorial participants. Next, we share the results of the transfer
task data for performance, code edits, and mental effort. See
Table IV for a summary of the transfer task results.

Puzzle participants performed better on the repeated and
repeated{parallel} transfer tasks. We conducted a MANOVA
using the Wilk’s lambda statistic for the effect of condition on
the transfer task performance scores Λ = .62, F(4, 22) = 3.43, p
< .05. Separate univariate ANOVAs reveal that the puzzle
participants performed significantly better than the tutorial
participants for the repeated F(1, 25) = 6.65, p < .05, and

TABLE III. TRAINING TASK RESULTS

Task Concept Puzzle Time (min) Tutorial Time (min)

Puzzle

Mental Effort

Tutorial

Mental Effort

Puzzle

Exposure

Tutorial

Exposure

1 Sequential execution M = 2.45, SD = 0.99*** M = 5.02, SD = 1.10*** M = 2.86, SD = 1.41 M = 2.62, SD = 1.26 100% 100%

2 Repeated execution M = 5.42, SD = 1.48 M = 5.64, SD = 1.10 M = 5.07, SD = 2.23** M = 2.53, SD = 1.23** 92.9% 100%

3 Parallel execution M = 3.19, SD = 1.12*** M = 4.78, SD = 0.99*** M = 4.00, SD = 2.32* M = 2.15, SD = 1.34* 100% 100%

4 Repeated & Parallel M = 2.80, SD = 1.24** M = 4.21, SD = 1.24** M = 3.29, SD = 1.73 M = 2.31, SD = 1.60 100% 100%

5 Parallel{ Repeated } M = 3.86, SD = 1.88 M = 4.78, SD = 1.06 M = 5.21, SD = 2.72* M = 2.85, SD = 2.12* 71.4% 76.9%

6 Repeated{ Parallel } M = 4.18, SD = 1.76 M = 3.86, SD = 0.75 M = 4.64, SD = 2.44* M = 2.62, SD = 2.33* 78.6% 92.3%

Challenging tasks. *** p < .001, ** p < .01, * p < .05

repeated{ parallel } F(1, 25) = 5.98, p < .05 transfer tasks.
However, there was no difference between the conditions for the
parallel F(1, 25) = .95, p = .34 and parallel{ repeated } F(1, 25)
= 1.03, p = .32 transfer tasks.

During the evaluation, we observed that some participants
completed the transfer tasks in a trial and error fashion. If
participants used significantly more edits than the minimum
required, this would suggest they may have completed the task
using trial and error. For some transfer tasks the tutorial users
made more insertions than the puzzle users. We conducted a
MANOVA for the difference between the conditions for the
number of insertions participants performed Λ = .63, F(4, 22) =
3.28, p < .05. Separate univariate ANOVAs revealed that this is
significant for the repeated F(1, 25) = 5.51, p < .05 and repeated{
parallel } F(1, 25) = 12.08, p < .05 transfer tasks. However, there
are no significant differences between the conditions for move
edits, Λ = .93, F(4, 22) = .39, p = .82. This suggests that in some
tasks, the puzzle participants made more purposeful edits than
the tutorial participants.

Additionally, in all transfer tasks puzzle participants took
less time than the tutorial participants in completing the transfer
tasks Λ = .68, F(4, 22) = 2.62, p = .06, however this difference
is not significant. Mental effort between conditions is also non-
significant Λ = .98, F(4, 22) = .13, p = .97. These results suggest
that puzzles can help users perform in similar tasks better or at
least equivalently to tutorials without significant differences in
task completion time or mental effort.

VII. DISCUSSION

Overall, our results suggest that programming puzzles are a
promising way to support the learning of programming
concepts. Participants who used the puzzles required less time
to learn and performed 26% better on the transfer tasks. Yet,
puzzle participants rated the mental effort required to complete
the training tasks 50% higher than tutorial participants. This
difference in mental effort provides a potential explanation for
the performance difference.

Tutorial participants could follow the instructions without
engaging deeply with the programming concept at the core of
each task, while the programming puzzles required participants
to think about the behavior of each statement within a program
and how to combine them to achieve a given outcome. The
puzzle format also intentionally removes unnecessary code
authoring barriers to focus learners on practicing directly with
the programming concepts. This is in direct contrast to the
tutorials which attempt to teach both the interface mechanics and
the programming concepts simultaneously by demonstration.
While the puzzles omit the interface mechanics, we believe that
this approach better prepares learners for using programming
concepts in a novel setting, like the transfer tasks.

While puzzle participants generally outperformed tutorial
participants, we did not see significant differences for all tasks.
Returning to the prior work on the problem completion effect
may provide ways to further increase learning performance [15].
Specifically, we note that problem completion strategies often
pair completion problems with worked examples [15]. We
explored presenting examples alongside the puzzles in formative
testing, but found that many participants preferred not to use the
examples. Investigating how best to incorporate examples so
that participants actively engage with example content is an
interesting direction for future work.

Finally, we note that we were surprised by the similarity in
attitudinal results between tutorial and puzzle participants. In
formative tests where participants interacted with both the
puzzles and tutorials, we observed a marked preference for the
puzzles. As one user noted, “I like the puzzles more [than the
tutorials]… so it was fun.” A within-subjects study comparing
attitudes towards the tutorials and puzzles may be better able to
measure our observed preference. However, the lack of
attitudinal difference between puzzles and tutorials may suggest
that a motivating context, such as storytelling, plays a larger role
in supporting motivation in early programming experience than
the presentation of learning materials. After the initial appeal of
the system has worn off, it is possible that the learning
experience will begin to have a larger impact on motivation.

VIII. CONCLUSION

In this paper, we presented our programming completion
puzzles as an effective learning alternative to tutorials. While
additional work is necessary to improve this strategy further, we
believe that these puzzles can help users learn programming
concepts independently. We also hope that this work inspires
novice programming environment authors to actively utilize
strategies that facilitate effective learning, ultimately resulting in
broader access and learning opportunities for children to learn
computer programming.

ACKNOWLEDGMENT

This material is based upon work supported by the National
Science Foundation under Grant No. 1054587.

REFERENCES

[1] “Scratch,” Scratch. [Online]. Available: https://scratch.mit.edu/.

[2] “Code.org,” Code.org. [Online]. Available: http://code.org/.

[3] “Looking Glass.” [Online]. Available: http://lookingglass.wustl.edu/.

[4] K. J. Harms, J. H. Kerr, and C. L. Kelleher, “Improving Learning Transfer
from Stencils-based Tutorials,” in Proc. Interaction Design and Children,
New York, NY, USA, 2011.

[5] K. J. Harms, D. Cosgrove, S. Gray, and C. Kelleher, “Automatically
Generating Tutorials to Enable Middle School Children to Learn
Programming Independently,” in Proc. Interaction Design and Children,
New York, NY, USA, 2013.

TABLE IV. TRANSFER TASK RESULTS

Transfer Task

Performance (%) –

Puzzle

Performance (%) –

Tutorial

Task Time (min) –

Puzzle

Task Time (min) –

Tutorial

Inserts –

Puzzle

Inserts –

Tutorial

Repeated M = 89.5, SD = 18.8* M = 65.6, SD = 28.7* M = 3.75, SD = 1.32* M = 4.94, SD = 1.07* M = 3.4* M = 4.4*

Parallel M = 88.1, SD = 24.8 M = 76.9, SD = 34.4 M = 2.16, SD = 0.97 M = 2.87, SD = 1.46 M = 2.8 M = 2.4

Parallel{ Repeated } M = 92.1, SD = 14.8* M = 68.5, SD = 32.9* M = 3.17, SD = 1.09 M = 3.96, SD = 1.77 M = 2.2 M = 2.8

Repeated{ Parallel } M = 77.9, SD = 32.1 M = 65.4, SD = 31.5 M = 3.70, SD = 1.28* M = 4.83, SD = 1.23* M = 2.4** M = 4.3**

** p < .01, * p < .05

[6] L. Bergman, V. Castelli, T. Lau, and D. Oblinger, “DocWizards: A
System for Authoring Follow-me Documentation Wizards,” in
Proceedings of the 18th Annual ACM Symposium on User Interface
Software and Technology, New York, NY, USA, 2005, pp. 191–200.

[7] C. Kelleher and R. Pausch, “Stencils-based Tutorials: Design and
Evaluation,” in Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, New York, NY, USA, 2005, pp. 541–550.

[8] S. Pongnumkul, M. Dontcheva, W. Li, J. Wang, L. Bourdev, S. Avidan,
and M. F. Cohen, “Pause-and-play: Automatically Linking Screencast
Video Tutorials with Applications,” in Proceedings of the 24th Annual
ACM Symposium on User Interface Software and Technology, New York,
NY, USA, 2011, pp. 135–144.

[9] C.-Y. Wang, W.-C. Chu, H.-R. Chen, C.-Y. Hsu, and M. Y. Chen,
“EverTutor: Automatically Creating Interactive Guided Tutorials on
Smartphones by User Demonstration,” in Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, New York, NY,
USA, 2014, pp. 4027–4036.

[10] M. J. Lee, F. Bahmani, I. Kwan, J. LaFerte, P. Charters, A. Horvath, F.
Luor, J. Cao, C. Law, M. Beswetherick, S. Long, M. Burnett, and A. J.
Ko, “Principles of a debugging-first puzzle game for computing
education,” in 2014 IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC), 2014, pp. 57–64.

[11] M. Eagle and T. Barnes, “Experimental Evaluation of an Educational
Game for Improved Learning in Introductory Computing,” in
Proceedings of the 40th ACM Technical Symposium on Computer Science
Education, New York, NY, USA, 2009, pp. 321–325.

[12] “Blockly Games.” [Online]. Available: https://blockly-
games.appspot.com/.

[13] J. J. G. Van Merrienboer and M. B. M. De Croock, “Strategies for
Computer-Based Programming Instruction: Program Completion Vs.
Program Generation,” J. Educ. Comput. Res., vol. 8, no. 3, Jan. 1992.

[14] J. J. G. Van Merriënboer, “Strategies for Programming Instruction in High
School: Program Completion vs. Program Generation,” J. Educ. Comput.
Res., vol. 6, no. 3, pp. 265–285, Jan. 1990.

[15] F. G. Paas, “Training strategies for attaining transfer of problem-solving
skill in statistics: A cognitive-load approach,” J. Educ. Psychol., vol. 84,
no. 4, pp. 429–434, 1992.

[16] J. Sweller, P. Ayres, and S. Kalyuga, Cognitive Load Theory. Springer,
2011.

[17] X. Zhu and H. A. Simon, “Learning Mathematics From Examples and by
Doing,” Cogn. Instr., vol. 4, no. 3, pp. 137–166, 1987.

[18] S. Garner, “A tool to support the use of part-complete solutions in the
learning of programming,” in Proceeding de conférence, 2001.

[19] D. Parsons and P. Haden, “Parson’s Programming Puzzles: A Fun and
Effective Learning Tool for First Programming Courses,” in Proceedings
of the 8th Australasian Conference on Computing Education - Volume 52,
Darlinghurst, Australia, Australia, 2006, pp. 157–163.

[20] S. Palmiter, J. Elkerton, and P. Baggett, “Animated demonstrations vs.
written instructions for learning procedural tasks: a preliminary
investigation,” Int J Man-Mach Stud, vol. 34, no. 5, pp. 687–701, 1991.

[21] F. Grabler, M. Agrawala, W. Li, M. Dontcheva, and T. Igarashi,
“Generating photo manipulation tutorials by demonstration,” in ACM
SIGGRAPH 2009 papers, New Orleans, Louisiana, 2009, pp. 1–9.

[22] P.-Y. Chi, S. Ahn, A. Ren, M. Dontcheva, W. Li, and B. Hartmann,
“MixT: Automatic Generation of Step-by-step Mixed Media Tutorials,”
in Proceedings of the 25th Annual ACM Symposium on User Interface
Software and Technology, New York, NY, USA, 2012, pp. 93–102.

[23] J. Fernquist, T. Grossman, and G. Fitzmaurice, “Sketch-sketch
Revolution: An Engaging Tutorial System for Guided Sketching and
Application Learning,” in Proc. User Interface Software and Technology,
New York, NY, USA, 2011.

[24] B. Lafreniere, T. Grossman, and G. Fitzmaurice, “Community Enhanced
Tutorials: Improving Tutorials with Multiple Demonstrations,” in
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, New York, NY, USA, 2013, pp. 1779–1788.

[25] W. Li, T. Grossman, and G. Fitzmaurice, “GamiCAD: A Gamified
Tutorial System for First Time Autocad Users,” in Proceedings of the

25th Annual ACM Symposium on User Interface Software and
Technology, New York, NY, USA, 2012, pp. 103–112.

[26] W. Li, T. Grossman, and G. Fitzmaurice, “CADament: A Gamified
Multiplayer Software Tutorial System,” in Proc. SIGCHI, New York,
NY, USA, 2014.

[27] H. Ramadhan, “An Intelligent Discovery Programming System,” in
Proceedings of the 1992 ACM/SIGAPP Symposium on Applied
Computing: Technological Challenges of the 1990’s, New York, NY,
USA, 1992, pp. 149–159.

[28] W. Sack, E. Soloway, and P. Weingrad, “From PROUST to CHIRON: Its
design as iterative engineering: Intermediate results are important,”
Comput.-Assist. Instr. Intell. Tutoring Syst. Shar. Goals Complement.
Approaches Lawrence Erlbaum Assoc. Hillsdale NJ, pp. 239–274, 1992.

[29] E. Soloway, E. Rubin, B. Woolf, J. Bonar, and W. L. Johnson, “MENO-
II: An AI-Based Programming Tutor.,” Aug. 1983.

[30] J. R. Anderson and E. Skwarecki, “The Automated Tutoring of
Introductory Computer Programming,” Commun ACM, vol. 29, no. 9, pp.
842–849, Sep. 1986.

[31] A. T. Corbett and J. R. Anderson, “Student modeling and mastery learning
in a computer-based programming tutor,” in Intelligent Tutoring Systems,
Eds. Springer Berlin Heidelberg, 1992, pp. 413–420.

[32] W. Jin, “Pre-programming Analysis Tutors Help Students Learn Basic
Programming Concepts,” in Proceedings of the 39th SIGCSE Technical
Symposium on Computer Science Education, New York, NY, USA, 2008.

[33] “Khan Academy.” [Online]. Available: http://www.khanacademy.org.

[34] “Codecademy.” [Online]. Available: http://www.codecademy.com/.

[35] J. Moody, “Distance Education: Why Are the Attrition Rates so High?,”
Q. Rev. Distance Educ., vol. 5, no. 3, pp. 205–210, 2004.

[36] T. Dong, M. Dontcheva, D. Joseph, K. Karahalios, M. Newman, and M.
Ackerman, “Discovery-based Games for Learning Software,” in
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, New York, NY, USA, 2012, pp. 2083–2086.

[37] “Lightbot.” [Online]. Available: http://lightbot.com/.

[38] “Code Avengers.” [Online]. Available: http://www.codeavengers.com/.

[39] “CodeCombat.” [Online]. Available: http://codecombat.com/.

[40] K. Hartness, “Robocode: using games to teach artificial intelligence,” J
Comput Small Coll, vol. 19, no. 4, pp. 287–291, 2004.

[41] J. Long, “Just for Fun: Using Programming Games in Software
Programming Training and Education--A Field Study of IBM Robocode
Community,” J. Inf. Technol. Educ., vol. 6, pp. 279–290, 2007.

[42] D. Seehorn, S. Carey, B. Fuschetto, I. Lee, D. Moix, D. O’Grady-Cunniff,
B. B. Owens, C. Stephenson, and A. Verno, “CSTA K–12 Computer
Science Standards: Revised 2011,” ACM, New York, NY, USA, 2011.

[43] A. Cockburn, P. Quinn, and C. Gutwin, “Examining the Peak-End Effects
of Subjective Experience,” in Proc. SIGCHI, New York, NY, USA, 2015.

[44] “Intrinsic Motivation Inventory,” Self-Determination Theory. [Online].
Available: http://www.selfdeterminationtheory.org/questionnaires/10-
questionnaires/50.

[45] F. G. W. C. Paas, J. J. G. Van Merrienboer, and J. J. Adam, “Measurement
of cognitive load in instructional research,” Percept. Mot. Skills, vol. 79,
no. 1, pp. 419–430, Aug. 1994.

[46] F. Paas, J. E. Tuovinen, H. Tabbers, and P. W. M. Van Gerven, “Cognitive
Load Measurement as a Means to Advance Cognitive Load Theory,”
Educ. Psychol., vol. 38, no. 1, pp. 63–71, 2003.

[47] H. Van der Heijden, “User acceptance of hedonic information systems,”
MIS Q., pp. 695–704, 2004.

[48] M. Igbaria, J. Iivari, and H. Maragahh, “Why do individuals use computer
technology? A Finnish case study,” Inf. Manage., vol. 29, no. 5, pp. 227–
238, Nov. 1995.

[49] J. C. Read, “Validating the Fun Toolkit: an instrument for measuring
children’s opinions of technology,” Cogn. Technol. Work, vol. 10, no. 2,
pp. 119–128, May 2007.

