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Abstract—Many novice programming environments use 

puzzle-like approaches to help novice programmers acquire new 

programming skills independently. Yet, little is known about 1) 

how puzzles can support effective learning of programming skills 

and 2) how learning programming using a puzzle-based approach 

compares to more a traditional tutorial style approach. We 

conducted a pair of studies to explore these two questions. First, 

we report lessons learned on the design of programming 

completion puzzles, their interface within a novice programming 

environment, and the design of a puzzle curriculum drawn from 

our first, formative study. We then report on a second study that 

compared the learning effectiveness of programming puzzles and 

tutorials. The results suggest that puzzles are a promising 

approach for introducing programming concepts within novice 

programming environments. Puzzle users performed 26% better 

on transfer tasks compared to tutorial users, while taking 23% less 

time to complete the learning materials. 

Keywords—novice programming; independent learning; 

programming puzzles; completion problems, completion strategy 

I. INTRODUCTION 

Opportunities to learn computer programming in formal 
educational settings are limited for many people, especially in 
grades K-12. In response, educators and researchers have 
created programming environments that can be used in informal 
settings [1]–[3]. Since classroom opportunities are limited, these 
systems often include resources designed to help users learn on 
their own. One of the challenges in creating these learning 
resources is that they must support users in learning both the user 
interface mechanics and programming concepts. 

Traditionally, novice programming environments have often 
attempted to support independent learning using tutorials [4]–
[6]. Much of the research on tutorials has focused on improving 
successful completion by guiding users through a series of steps 
while minimizing errors [7]–[9]. While completing tutorials 
may help with user interface mechanics, it is not clear how well 
novice programmers learn programming concepts via tutorials. 

More recently, some programming environments have 
begun to use a more puzzle-like approach to facilitate 
independent learning [2], [10]–[12]. Often these environments 
present some type of challenge with code pieces and encourage 
users to solve the challenge using the code pieces. While the 
specific inspirations for many of these environments’ puzzle-
like approaches are unclear, the methods are similar to Van 
Merriënboer’s programming completion strategy [13]. 

Van Merriënboer demonstrated that high school students 
who practiced programming by completing partial programs 
were later able to construct better programs than students who 
practiced by writing programs from scratch [14]. Completing a 
partial problem is known as the completion strategy or as a 
completion problem [14], [15]. Completion problems are 
partially worked examples that require a user to complete the 
remaining key steps [16]. The completion strategy has also been 
found effective in other educational domains [15], [17]. We 
hypothesize that programming puzzles can also leverage the 
completion strategy and consequently better support the learning 
of programming concepts. 

Researchers have also proposed the use of programming 
puzzles to support learning [10], [18], [19]. However, we are 
unaware of any work that empirically evaluates the effectiveness 
of programming puzzles to support independent learning.  

In this paper, we present our work developing programming 
completion puzzles that facilitate learning for middle school 
children. Specifically, we iteratively developed and tested a 
puzzle interface and curriculum within a blocks-based 
programming environment. We report our lessons learned on 
how to construct both the interface support and curriculum to 
encourage learning. We then compare the learning effectiveness 
of tutorials and puzzles on a set of four programming concepts. 
Participants who learned using programming puzzles spent 23% 
less time in the learning phase and performed 26% better on 
transfer tasks than participants who learned using tutorials.  

II. RELATED WORK 

Prior work has investigated tutorials, tutors, and puzzle-like 
programming environments. We discuss how prior work 
supports learning independently in the context of programming. 

A. Tutorials 

Prior research has mostly investigated improving tutorial 
presentation and mechanics. Tutorial presentation can take the 
form of static text [20], pictures [21], or video [8], [22] or can 
even be interactive [5]–[7], [9], [23]. Generally, these systems 
have focused on improving tutorial completion by providing 
additional scaffolding or support by using videos [22], onscreen 
annotations [7], [9], synchronizing user progress with the 
tutorial [7], [8], [23], or viewing other users’ tutorial experiences 
[24]. Some researchers have used gamification to help motivate 
users to complete tutorials [25], [26]. Researchers also found 
that reconstructing code via a tutorial enabled users to perform 



 

 

better on transfer tasks than directly inserting the code [5]. 
Beyond this, it is unclear how well tutorials will perform when 
teaching beyond mechanics. 

B. Tutors 

Unlike tutorials, programming tutors typically focus on 
providing students with programming practice alongside 
classroom instruction. During practice, many programming 
tutors focus on helping identify student programming errors 
[27]–[30]. Further, cognitive tutors [31] and intelligent tutoring 
systems [27] try to provide sufficient practice by modeling 
students’ knowledge and suggesting additional practice for un-
mastered concepts. These types of tutors have been found to be 
effective with classroom instruction [32]. 

Outside of the classroom, online tutors try to provide a 
classroom-like experience [33], [34]. However, many students 
often start but fail to finish online instruction [35]. It is not clear 
whether or not systems designed to complement the classroom 
or for extra practice are effective when used alone.  

C. Puzzle-Like Systems 

Puzzle-like systems frequently present some form of 
problem and require users to formulate a solution to solve that 
problem [36]. In the context of programming, many puzzle 
systems give users an objective that requires them to program an 
object’s path through obstacles on a grid [2], [10], [37]–[39]. 
Frequently, puzzle-like programming environments use tutorials 
as part of their initial user experience [2], [10], [37], [38]. 
Introductory tutorials typically take the form of tutorial levels 
that introduce the puzzle’s mechanics. To encourage learning, 
some systems use debugging [10] or competition [40], [41]. 
However, beyond these few systems many puzzle-like systems 
simply appear to encourage learning through some form of the 
completion strategy [13] including CORT [18] and Parson’s 
puzzles [19]. We are not aware of any work that explores the 
learning effectiveness of programming puzzles.  

III. FORMATIVE EVALUATION 

We broke our formative work into two parts: 1) designing 
the programming puzzles format and interface, and 2) creating a 
programming puzzle curriculum.  

A. Programming Puzzle Format & Interface 

We chose to implement our programming completion 
puzzles within the novice programming environment, Looking 
Glass [3]. Looking Glass is a blocks-based programming 
environment that enables users to author 3D animated stories by 
dragging and dropping program statement tiles. When executed, 
programs in Looking Glass are 3D animations. 

We designed the puzzle format and interface through ten 
iterations of formative testing. We conducted our formative 
testing with 23 users between the ages of 10 and 15 years at the 
St. Louis Science Center. Each session lasted 30 minutes. We 
compensated participants with a $5 gift certificate. 

We used a variety of methods to iteratively design and 
develop our puzzle format and interface. Our methods included 
mockups, paper prototyping, Wizard of Oz testing, and working 
prototypes.  

See Fig. 1 for our final puzzle interface. Users complete the 
puzzles by dragging statements from the unused statement bin 
(Fig. 1.A) into the puzzle workspace (Fig. 1.B). Users must use 
all of the statements in the bin to complete the puzzle. If users 
need to view the correct program output or view the puzzle’s 
output, they click the appropriate play button (Fig. 1.D). This 
brings up the program output overlay pane (Fig. 1.E). When the 
user is viewing the puzzle output, the puzzle correctness 
indicator (Fig. 1.F) will show the user’s current progress. The 
puzzle is correct, when all of the indicator’s dots are green. 

B. Puzzle Format & Interface Lessons Learned 

We share some of the features of our puzzle interface and 
lessons learned in developing an effective puzzle format that 
facilitates independent learning. 

 
Fig. 1. Our programming completion puzzle interface. Users drag statements from the unused puzzle statements bin (A) into the puzzle workspace (B). (C) shows 
the initial starting state of the program. Users view the correct program output or their puzzle output by clicking the appropriate play button (D) which brings up 

the program output overlay (E). When viewing the puzzle’s output users receive feedback on their progress from the correctness indicator (F). 

 



 

 

1) Only show the user’s work in the program’s output. 
Initially, we attempted to implement the completion strategy 

for programming by taking a complete program and scrambling 
the order of all the statements. Using a typical (drag-n-drop) 
block-based code editor, users would then only need to reorder 
the statements into the correct order to complete the puzzle. 
Through testing, we realized that when participants viewed the 
program’s output, the output showed both the parts of the 
program that the user had reordered and the parts that they had 
not yet reordered. Mixing both elements in the output made it 
impossible for users to tell where their changes ended and where 
the scrambled code began. 

To address this we switched from the reorder strategy to the 
place-in-order strategy. Users now place the statements in the 
correct order by dragging the unused statements from a bin and 
placing them into the correct order in the puzzle workspace. This 
ensures that only the work that the user has completed is shown 
in the program’s output. 

2) Limit the editable dimensions of the puzzle. 
During our early testing using the reorder strategy, we found 

that users changed the code beyond reordering the statements. 
In a typical code editor, a programmer can change the code in 
several dimensions: she may add new statements, and edit, 
move, or delete existing statements. Early in our formative 
testing, we discovered that using a code editor gives users too 
many dimensions to manipulate. When everything in a puzzle is 
editable, the user thinks they need to change all of these 
dimensions. Many editable dimensions can make these puzzles 
extremely difficult to complete successfully. In our final 
version, we limited editing the puzzles to moving statements. 
Increasing the number of dimensions may provide later 
opportunities for increasing puzzle difficulty. 

3) When executing a program, limit distractions and focus 

the user’s attention on the program’s output.  
To complete a programming puzzle, a user needs to know 

what the correct output looks like and how it compares to the 
puzzle’s output. We initially tried allowing users to execute and 
view both the correct output and the puzzle output side-by-side. 
Unfortunately, users spent most of their time looking back and 
forth between both outputs, missing key moments. Any 
distractions, including looking at the actual code, caused users 
to miss important details in the program output that would help 
them to complete the puzzle. We focus the user’s attention by 
solely showing the output in an overlay pane that obscures the 
actual code as shown in Fig. 1.E. Users can view the correct 
output or the puzzle output, but not both at the same time. 
Without distractions, the user can carefully study the nuances of 
program’s behavior and later tie the behavior to the appropriate 
puzzle statements. 

4) Provide the user with ambiguous and incremental 

feedback towards the puzzle’s solution. 
When using the typical code editor for the puzzles, the user 

only received a notification that the puzzle was complete once 
every statement was in the correct order. Prior to receiving this 
notification, many participants believed they had correctly 
completed the puzzle, leading many to terminate the puzzle 
prematurely. We developed and tested several incremental 
progress indicators to provide feedback throughout puzzle 

editing. Unfortunately, early versions were easy to game; 
participants noticed they could quickly rearrange the statements 
until the progress bar increased without actually having to try to 
complete the puzzle. To limit this type of behavior and to 
encourage engagement, we increased the ambiguity within our 
feedback indicator. We increased the ambiguity by reducing the 
ability for users to make a direct mapping between the code and 
the progress indicator. 

Fig. 1.F shows our final incremental and ambiguous progress 
indicator. Throughout our formative testing, all users used a top-
down approach to solve the puzzles. Our progress indicator is 
designed to provide feedback for the first error in the puzzle, 
which supports this top-down approach. This indicator shows a 
new dot each time a statement is executed. A green dot means 
that the currently executing statement is correct. However, when 
the first incorrect statement in the puzzle (the fly above method 
in Fig. 1) is executed a new orange dot is added. Any executing 
statements that follow the incorrect statement are added as gray 
dots. For additional ambiguity, we group all similarly colored 
dots together; all green dots are grouped together, followed by 
all orange dots, and then the gray dots. Through testing, we 
found that this feedback mechanism seems to strike the right 
balance between incremental and ambiguous feedback. 

C. Programming Puzzle Curriculum 

After developing the puzzle format and interface, we then 
moved to creating the actual content for the programming 
completion puzzles. We based our puzzle curriculum on 
concepts found in the middle school level (2) of the Computer 
Science Teacher’s Association’s curricular standards [42]. We 
selected four concepts at the introductory level that are useful 
for authoring 3D animations: repeated execution (Repeat), 
parallel execution (Do Together), parallel nested within repeated 
execution, and repeated nested within parallel execution. 

We recruited 21 participants between the ages of 10 and 15 
years from the Academy of Science of St. Louis mailing list. 
Each session lasted 90 minutes. Afterwards, we compensated 
participants with a $10 gift certificate. 

We created eight iterations of our puzzle curriculum with the 
final version containing six puzzles. See Table I for the puzzle 
curriculum. We designed the puzzles to expose users to the four 
new concepts and vary in difficulty to help keep users engaged. 
Fig. 1 shows a partially completed puzzle for lesson 4. 

D. Curriculum Lessons Learned 

In the following section, we discuss some of the lessons we 
learned while creating our puzzle curriculum. 

1) Author puzzle programs with motivating scenarios. 
Completion problems are often described as partial worked 

examples [16] and so we initially created our early puzzles to be 

TABLE I.  PROGRAMMING PUZZLE CURRICULUM 

ID Programming Concept Difficulty No. Statements 

1 Sequential execution Easy 7 

2 Repeated execution Challenging 10 

3 Parallel execution Challenging 9 

4 Repeated & Parallel Easy 9 

5 Parallel{ Repeated } Challenging 8 

6 Repeated{ Parallel } Challenging 10 

 



 

 

examples more focused on demonstrating concept behavior. 
However, this resulted in puzzles that users did not find 
compelling. For example, users frequently lacked the motivation 
to complete our initial repeat puzzle that simply had an object 
move up and down three times. From informal interviews, we 
realized that we needed to provide users with puzzles that 
excited them. 

One approach we found that motivated users was to author 
puzzles with a problem-solution scenario. These puzzles contain 
a compelling initial scene with a scenario that contains a 
problem and resolution. For example, the puzzle in Fig. 1 shows 
a initial scene of an alien on a planet. After viewing the correct 
output, users realize that they have to help the alien leave the 
planet by repairing his broken spaceship. Users are motivated to 
finish the puzzle in order to help the alien escape the planet. 

2) Author puzzle programs with memorable segments. 
We found during testing that if an animation or part of an 

animation was not memorable, then users had to continuously 
flip between the correct output and puzzle output to know what 
to work on next. To limit this thrashing, a user should be able to 
remember the part of the puzzle they are working on without the 
need to continuously review the correct output. A simple 
approach is to author puzzle programs so that there are 
memorable segments. The alien example above contains three 
memorable segments: the alien fixing the broken spaceship, the 
alien entering the spaceship, and the spaceship leaving the 
planet. We also suggest using exaggerated or over-the-top 
animations which can be easier to remember. 

3) Provide a challenge without being tricky. 
Over the course of our formative sessions, we found that 

participants sometimes had very different reactions to difficult 
puzzles. In some cases, completing a difficult puzzle was a very 
rewarding experience. In others, participants remained 
frustrated, even after finding the correct solution. Participants’ 
descriptions of these puzzles reflect these two kinds of reactions. 
Participants often described rewarding puzzles as challenging 
and frustrating puzzles as tricky. Through examining a 
collection of tricky and challenging puzzles, we noticed that 
what differentiates these puzzles is the source of their difficulty.  

Tricky puzzles pull users’ mental resources away from the 
puzzle’s programming concept and instead expend their 
resources on extraneous details. Frequently, these extraneous 
details require participants to observe subtle details in the 
animation or notice subtle differences between statements. For 
example, an early puzzle included small rotations of a 
character’s joint that participants struggled to perceive when 
viewing the puzzle output. In another case, a puzzle included 
nearly identical statements, one moved 1.0 meters and the other 
1.2 meters. Participants frequently swapped these two 
statements in the puzzle and perceived the resulting output as 
matching the correct one. While participants typically solve 
tricky puzzles, they often finish with a sense that they have 
wasted a lot of time on unimportant details. 

In contrast, we found that users really enjoyed challenging 
puzzles. Frequently, users commented that they liked the 
challenging puzzles best, “I thought this one was a little 
challenging, but I liked it!” The source of difficulty in 
challenging puzzles was the puzzle’s new programming 

concept. These puzzles were still difficult for users, but this type 
of difficulty feels authentic because users finish with a new skill; 
spending time on it feels justified.  

However, we note that too many challenging puzzles can be 
overwhelming for users. During one formative testing session, 
we replaced all of our easy puzzles with challenging ones. In this 
session, users no longer enjoyed the puzzles. Providing 
difficulty variation between different puzzles seemed to result in 
the best user experience. 

4) Leave the users with a positive impression. 
The last few statements of a puzzle leave a lasting 

impression on users. Frequently, when users recall their whole 
experience completing a task, their experience is shaped by the 
end experience of the task [43]. Even though users enjoy the 
challenging aspects of puzzles, we end all puzzles with easier 
statements. Not only does the user feel like they had a rewarding 
experience due to accomplishing the challenging portion, but 
they also walk away from the puzzle with a confidence boost. 
We believe this helps motivate users, as noted by some users, “I 
just wanna do puzzles!” 

IV. SUMMATIVE EVALUATION 

After our formative evaluation, we conducted a between 
subjects evaluation to assess the effectiveness of learning new 
programming concepts with programming puzzles compared to 
tutorials. After conducting a literature review of current widely-
used novice programming systems, we observed that several 
offered the option to also use some form of tutorial [1], [2], [10]. 
We primarily based our tutorial condition on Scratch’s step-by-
step video and text tutorials [1].  

See Fig. 2 for our implementation of these tutorials. Every 
step in the tutorial instructs the user to insert a statement into 
their program. For each step there is a looping screencast video 
showing how to complete the step as well as text directions 
instructing the user what statement they need to insert.  

From our evaluation, we intended to answer the following 
questions: 1) Do puzzles require a different time and mental 

 
Fig. 2. The tutorial condition. The tutorial window (A) shows a video and text 

description of each step. Users complete the step in the programming editor (B) 
and then manually advance the tutorial (C). 

 



 

 

investment than tutorials? 2) Are puzzles more motivating than 
tutorials? and 3) Do puzzle users show more evidence of 
learning than tutorial users? 

A. Participants 

We recruited 34 participants between the ages of 10 and 15 
for two separate experiments that lasted two hours. This paper 
presents only the first experiment. We recruited participants 
through the Academy of Science of St. Louis mailing list. The 
Academy of Science is a not-for-profit organization dedicated to 
science outreach within the St. Louis metropolitan area. This 
mailing list is well known by community members and was 
further forwarded around local schools and other groups. 

We screened participants for minimal (less than 3 hours 
total) programming experience. Upon arriving to the study 
location, we interviewed all participants for prior programming 
experience. We removed 7 participants due to screening failures 
discovered during the interviews. With screening failures 
removed, we analyzed the data for 27 participants (gender: 12 
female, 15 male; age: M = 11.59, SD = 1.60). We compensated 
participants with a $10 gift certificate. 

B. Materials 

We developed programs and survey materials that 
participants used during training and transfer study phases. 

1) Familiarization Tasks 
For each study phase, we developed a phase familiarization 

task. The familiarization task introduced participants to the 
format of the tasks for the phase and also introduced participants 
to the interface mechanics of the programming environment. 
Each task’s format was identical to the training or transfer tasks. 

2) Training Tasks 
We used the puzzles developed during our formative testing 

for the content of our six training tasks. For our puzzle condition, 
we used the puzzles in their original form. However, for the 
tutorial condition we authored tutorials that produced the same 
programs as the puzzles but within a typical code editor. 

3) Transfer Tasks 
To measure learning, we wanted to know if given a novel 

problem, can users identify and correctly use the programming 
constructs needed to solve that problem. In response, we 
developed four transfer tasks, one for each of the challenging 
programming concepts introduced in our curriculum (See Table 
I). We asked participants to complete the transfer tasks in a 
typical code editor. 

The transfer tasks are complete programs that contain 
correctly ordered method invocations along with a description 
and video of the correct program output. Each program is 
missing the required control flow constructs necessary to create 
the desired output. To complete a transfer task a user must 1) 
determine the appropriate constructs, 2) locate the constructs 
within the programming environment, and 3) drag the construct 
blocks into the existing code and move the appropriate 
statements into the construct blocks. No additional method 
invocations are necessary to complete these tasks. This setup is 
intended to allow participants to spend their time demonstrating 
their mastery of the programming concepts rather than writing 
entire programs from scratch. 

4) Surveys 
We used two surveys for our evaluation: a self-developed 

task survey and the Intrinsic Motivation Inventory’s Task 
Evaluation Questionnaire (TEQ). The TEQ is a 22 Likert scale 
item questionnaire with four subscales: interest/enjoyment, 
perceived competence, perceived choice, and pressure tension 
[44]. Participants rate each item on a scale from 1 - not true at 
all, to 7 - very true. 

Our task survey was comprised of a multiple-choice question 
and five Likert scale items: a mental effort scale and four 
enjoyment scales. The mental effort survey is a well validated 
and reliable unidimensional scale from 1 - extremely easy (very, 
very low mental effort), to 9 - extremely difficult (very, very 
high mental effort) [45], [46]. The perceived enjoyment scale 
contains four, seven item Likert scale items: enjoyable – 
unenjoyable, exciting – dull, pleasant – unpleasant, interesting – 
boring [47], [48]. Lastly, we included the again again table, 
which asks participants whether they would like to do this 
activity again with the following choices: yes, maybe, no [49]. 

C. Methods 

We conducted our evaluation with four multi-user sessions. 
Each participant attended one of the two-hour sessions. Even 
though multiple participants attended each session, each 
participant worked independently. The study took place in a 
typical computer lab environment. We seated participants to 
minimize viewing other participants’ screens. 

 We randomly assigned the participants to the puzzle or 
tutorial condition (puzzle: 14, tutorial: 13). Participants first 
completed the training phase followed by the transfer phase. 
Following the transfer phase, the participants completed a 
separate experiment (not presented). After completion of the 
separate experiment, participants were free to author their own 
programs. See Fig. 3 for an overview of the basic study 
procedure for this experiment. 

1) Training Phase 
The training phase consisted of the following activities: the 

familiarization task, six training tasks with task surveys, 
followed by the TEQ survey. We gave participants a maximum 
of 7 minutes to finish the familiarization task and each training 
task. Following each task, we asked participants to complete a 
task survey. During our pilot studies, almost all participants 
completed each task within 7 minutes (this is roughly the mean 
plus a standard deviation). We allowed participants to ask any 
questions during the familiarization task. We also helped 
participants complete the familiarization task if they needed 
assistance with the directions or interface mechanics. For the 

 
Fig. 3. Overview of the basic summative evaluation procedure. 

 



 

 

actual training tasks, participants were not allowed to ask 
questions and worked independently. 

Once participants completed the familiarization task, they 
were given the six training tasks in the curriculum order. Based 
on the participant’s condition they completed all tasks using 
either the puzzles or tutorials. Following each training task, 
participants completed the task survey. After completing all 
training tasks, we asked participants to complete the TEQ. 

2) Transfer Phase 
The transfer phase consisted of the familiarization task and 

four transfer tasks with task surveys. We gave participants a 
maximum of 6 minutes to complete the familiarization and all 
transfer tasks. After each task, we asked participants to complete 
the task survey. We used a Latin squares design to administer 
the transfer tasks to control for learning effects. Like the training 
phase, we assisted participants if necessary during the 
familiarization task; we provided no assistance for the four 
transfer tasks. After each transfer task, we asked participants to 
complete the task survey. 

V. ANALYSIS 

We collected log data from all tasks, scored the transfer tasks 
and analyzed the surveys. 

A. Log Data 

We gathered timing, event data, and code edits from the logs. 

B. Transfer Task Scoring 

We developed a grading rubric for each of the transfer 
programs based on the prior work of Harms et al. [5]. Using the 
rubric, we assigned a numerical score to each transfer task. For 
every transfer task, roughly three fourths of the points were 
dedicated to correct usage of the programming concept. When 
assigning points, we gave each attribute of the programming 
construct one point. The remaining points were assigned for 
carefully following the directions so that the program’s output 
was identical to the correct output. 

See Table II for a partial example of the scoring for a repeat 
statement in the repeat transfer task. The last two criterion: no 
additional statements and animation is correct, may seem 
identical, however they capture different attributes. Some 
participants will not use the repeat block and instead insert 
duplicate code statements. In this situation, the animation is 
correct, but solution is not (total score: 1 point). 

We carefully designed each transfer program rubric to assign 
credit for each attribute once. Not all tasks have multiple 
solutions like the repeat task. For example, when evaluating the 
parallel transfer task, we gave a single point for correctly using 
a parallel construct and for having a correct animation. For this 

task, the user must use a parallel Do Together block; no other 
solutions exist to produce a correct animation without using the 
parallel construct. 

C. Task Surveys 

We analyzed the results for the mental effort scale, the four 
perceived enjoyment scales, and the again again table. 

D. TEQ Survey 

The interest/enjoyment and perceived competence subscales 
of the TEQ are reliable, Cronbach’s α = .91, .72 respectively. 
The subscales for perceived choice (Cronbach’s α = .58) and 
pressure/tension (Cronbach’s α = .62) are not reliable. We have 
only included the interest/enjoyment and perceived competence 
subscales in our analysis. 

VI. RESULTS 

In this section, we address the results of our evaluation in 
terms of answering our research questions. 

A. Do puzzles require a different time and mental investment 

than tutorials? 

We looked at time and mental investment by examining 
three factors from the training phase data: time, mental effort, 
and exposure to the programming concept. We wanted to know 
if there was any difference in completion time between the 
conditions. We also wanted to know if puzzles required more 
mental effort than tutorials and if puzzles exposed users to the 
appropriate concepts at the same rate as tutorials. We found that 
puzzle participants overall took 23% less time, required 50% 
more mental effort, and were exposed to programming concepts 
equivalently to tutorial participants. 

1) Puzzle and Tutorial Task Time 
Overall puzzle participants spent 23% less time completing 

the puzzles compared to the tutorial participants. See Table III 
for training task time for the puzzle and tutorial conditions. We 
conducted a MANOVA using Wilk’s lambda statistic. There 
was a significant effect of condition (puzzle or tutorial) on the 
training task time, Λ = .25, F(6, 20) = 9.90, p < .001. However, 
separate univariate ANOVAs revealed that this effect was only 
significant for the sequential (1) F(1, 25) = 41.44, p < .001, the 
parallel (3) F(1, 25) = 15.72, p < .001, and the repeated & 
parallel (4) F(1, 25) = 8.76, p < .01 tasks. There was no 
significant difference for the repeated (2) F(1, 25) = 0.19, p = 
.67, the parallel with nested repeat (5) F(1, 25) = 2.45, p = .13, 
and the repeat with nested parallel (6) F(1, 25) = 0.37, p = .55 
tasks. The total time participants spent completing all training 
tasks for the puzzle (M = 21.89, SD = 6.05) compared to the 
tutorial (M = 28.31, SD = 5.05) was also significant t(24.73) = 
3.00, p < .01. 

We were curious why some training tasks took less time for 
the puzzles, but not all. We hypothesized that puzzle difficulty 
and longer program execution due to loops might be a factor. 
We observed that all of the non-significant training tasks (2, 5, 
and 6) all contained repeated execution and were all rated 
difficult. Difficult puzzles require users to continuously iterate 
and check their work many times since the solution is not 
immediately obvious to them. In contrast, tutorial users were led 
through the correct assembly of the programs and did not need 

TABLE II.  TRANSFER TASK SCORING EXAMPLE 

Scoring Rubric Points 

Has repeat block. 1 

Repeat has correct index. 1 

Correct statements inside of repeat. 1 

No additional statements inserted. 1 

The animation is correct. 1 

Total 5 

 



 

 

to continuously check the output to validate their work. 
Repeated execution would also cause the program execution 
time to increase. Typically, each executing statement in Looking 
Glass takes one second to execute. We note however, that the 
number of statements for the training programs was relatively 
consistent as shown in Table I. 

For all of the challenging tasks (2, 3, 5, and 6) puzzle users 
spent significantly more time executing their program than 
tutorial users. There was a significant effect of condition (puzzle 
or tutorial) on the program execution time, Λ = .50, F(6, 20) = 
3.48, p < .05. Separate univariate ANOVAs revealed this was 
significant for tasks (2) F(1, 25) = 18.07, p < .001, (3) F(1, 25) 
= 6.23, p < .05, (5) F(1, 25) = 7.52, p < .05, and (6) F(1, 25) = 
11.59, p < .01. Yet, of tasks 2, 3, 5, and 6, task 3 is the only task 
that does not contain a loop. We think this suggests that the extra 
time puzzles users spent in tasks 2, 5, and 6 is may be due to the 
extra time necessary to execute and view the output of the loops. 

2) Puzzle and Tutorial Mental Effort 
Puzzle participants rated the challenging tasks as requiring 

more mental effort than the tutorial participants. We conducted 
a MANOVA using Wilk’s lambda statistic, there was a 
significant effect of condition on the mental effort rating, Λ = 
.49, F(6, 20) = 3.47, p < .05. Separate univariate ANOVAs 
revealed that this was significant for all the challenging tasks, 
(2) F(1, 25) = 13.49, p < .01, (3) F(1, 25) = 6.26, p < .05, (5) 
F(1, 25) = 6.30, p < .05, and (6) F(1, 25) = 4.87, p < .05. 
However, it was not significant for the easy tasks, (1) F(1, 25) = 
.22, p = .64 and (4) F(1, 25) = 2.32, p = .14.  

3) Puzzle and Tutorial Concept Exposure 
Participants were exposed approximately equally to the new 

programming concepts regardless of whether they used tutorials 
or puzzles during the training tasks. When completing a puzzle, 
participants may not have discovered the correct solution and 
thus lacked exposure to the programming concept. If a tutorial 
user failed to complete the tutorial correctly, they may also have 
lacked exposure. To measure concept exposure we analyzed 
each participant’s training tasks to see if at some point during 
the puzzle or tutorial the code was in a state where the desired 
programming concept was correctly demonstrated. See Table III 
for the exposure rates for the puzzle and tutorials conditions. 
There are no significant differences between the conditions and 
exposure for all tasks: (1) χ2(1) = .04, p = .85, (2) χ2(1) = 0, p = 
1, (3) χ2(1) = .04, p = .85, (4) χ2(1) = .04, p = .85, (5) χ2(1) = 0, 
p = 1, and (6) χ2(1) = .21, p =.64.  

B. Are puzzles more motivating than tutorials? 

We used the training tasks surveys and the TEQ to help us 
determine whether the puzzles are more motivating than 

tutorials. We found no significant effects for these measures 
between the puzzle and tutorial conditions suggesting no 
difference in motivation between the conditions. 

The TEQ showed no significant changes between the 
conditions. For the TEQ interest/enjoyment subscale (1 = not 
true, 7 = very true), the puzzle (M = 5.55, SD = 1.03) and tutorial 
(M = 5.64, SD = 1.42), participants rated that they enjoyed their 
experience. For the perceived competence subscale, the puzzle 
(M = 5.19, SD = .87) and tutorial (M = 5.94, SD = .94) 
participants also rated that they felt competent. We conducted a 
MANOVA using Wilk’s lambda statistic. There was no effect 
of condition on the interest/enjoyment and perceived 
competence subscales Λ = .84, F(2, 24) = 2.34, p = .12. 

The training task surveys showed no differences between 
conditions. Participants in both conditions rated each task as 
enjoyable, exciting, pleasant, and interesting. They also rated 
that they would like to do the task again. For the perceived 
enjoyment survey we conducted a MANOVA using Wilk’s 
lambda statistic for the effect of condition on the scales: 
enjoyable – unenjoyable Λ = .79, F(6, 20) = .91, p = .51, exciting 
– dull Λ = .55, F(6, 20) = 2.78, p < .05, pleasant – unpleasant Λ 
= .72, F(6, 20) = 1.32, p = .30, and interesting – boring Λ = .67, 
F(6, 20) = 1.67, p = .18. The exciting – dull scale was the only 
significant scale, however, separate univariate ANOVAs 
revealed no differences between the conditions. The again again 
table also revealed similar non-significant results, Λ = .85, F(6, 
20) = .59, p = .74. These results suggest that puzzles are no more 
or less motivating that tutorials. However, we note that these 
results do not align with our formative evaluation observations; 
we discuss this further in the discussion section. 

C. Do puzzle users show more evidence of learning than 

tutorial users? 

Lastly, we wanted to know whether users learn 
programming concepts more effectively using puzzles or 
tutorials. Overall, we found that puzzle participants performed 
26% better on the transfer tasks, required equivalent mental 
effort to complete the transfer tasks, and took 23% less time than 
tutorial participants. Next, we share the results of the transfer 
task data for performance, code edits, and mental effort. See 
Table IV for a summary of the transfer task results. 

Puzzle participants performed better on the repeated and 
repeated{parallel} transfer tasks. We conducted a MANOVA 
using the Wilk’s lambda statistic for the effect of condition on 
the transfer task performance scores Λ = .62, F(4, 22) = 3.43, p 
< .05. Separate univariate ANOVAs reveal that the puzzle 
participants performed significantly better than the tutorial 
participants for the repeated F(1, 25) = 6.65, p < .05, and 

TABLE III.   TRAINING TASK RESULTS 

Task Concept Puzzle Time (min) Tutorial Time (min) 

Puzzle 

Mental Effort 

Tutorial 

Mental Effort 

Puzzle 

Exposure 

Tutorial 

Exposure 

1 Sequential execution M = 2.45, SD = 0.99*** M = 5.02, SD = 1.10*** M = 2.86, SD = 1.41 M = 2.62, SD = 1.26 100% 100% 

2 Repeated execution M = 5.42, SD = 1.48 M = 5.64, SD = 1.10 M = 5.07, SD = 2.23** M = 2.53, SD = 1.23** 92.9% 100% 

3 Parallel execution M = 3.19, SD = 1.12*** M = 4.78, SD = 0.99*** M = 4.00, SD = 2.32* M = 2.15, SD = 1.34* 100% 100% 

4 Repeated & Parallel M = 2.80, SD = 1.24** M = 4.21, SD = 1.24** M = 3.29, SD = 1.73 M = 2.31, SD = 1.60 100% 100% 

5 Parallel{ Repeated } M = 3.86, SD = 1.88 M = 4.78, SD = 1.06 M = 5.21, SD = 2.72* M = 2.85, SD = 2.12* 71.4% 76.9% 

6 Repeated{ Parallel } M = 4.18, SD = 1.76 M = 3.86, SD = 0.75 M = 4.64, SD = 2.44* M = 2.62, SD = 2.33* 78.6% 92.3% 

Challenging tasks. *** p < .001, ** p < .01, * p < .05 



 

 

repeated{ parallel } F(1, 25) = 5.98, p < .05 transfer tasks. 
However, there was no difference between the conditions for the 
parallel F(1, 25) = .95, p = .34 and parallel{ repeated } F(1, 25) 
= 1.03, p = .32 transfer tasks. 

During the evaluation, we observed that some participants 
completed the transfer tasks in a trial and error fashion. If 
participants used significantly more edits than the minimum 
required, this would suggest they may have completed the task 
using trial and error. For some transfer tasks the tutorial users 
made more insertions than the puzzle users. We conducted a 
MANOVA for the difference between the conditions for the 
number of insertions participants performed Λ = .63, F(4, 22) = 
3.28, p < .05. Separate univariate ANOVAs revealed that this is 
significant for the repeated F(1, 25) = 5.51, p < .05 and repeated{ 
parallel } F(1, 25) = 12.08, p < .05 transfer tasks. However, there 
are no significant differences between the conditions for move 
edits, Λ = .93, F(4, 22) = .39, p = .82. This suggests that in some 
tasks, the puzzle participants made more purposeful edits than 
the tutorial participants. 

Additionally, in all transfer tasks puzzle participants took 
less time than the tutorial participants in completing the transfer 
tasks Λ = .68, F(4, 22) = 2.62, p = .06, however this difference 
is not significant. Mental effort between conditions is also non-
significant Λ = .98, F(4, 22) = .13, p = .97. These results suggest 
that puzzles can help users perform in similar tasks better or at 
least equivalently to tutorials without significant differences in 
task completion time or mental effort. 

VII. DISCUSSION 

Overall, our results suggest that programming puzzles are a 
promising way to support the learning of programming 
concepts. Participants who used the puzzles required less time 
to learn and performed 26% better on the transfer tasks. Yet, 
puzzle participants rated the mental effort required to complete 
the training tasks 50% higher than tutorial participants. This 
difference in mental effort provides a potential explanation for 
the performance difference. 

Tutorial participants could follow the instructions without 
engaging deeply with the programming concept at the core of 
each task, while the programming puzzles required participants 
to think about the behavior of each statement within a program 
and how to combine them to achieve a given outcome. The 
puzzle format also intentionally removes unnecessary code 
authoring barriers to focus learners on practicing directly with 
the programming concepts. This is in direct contrast to the 
tutorials which attempt to teach both the interface mechanics and 
the programming concepts simultaneously by demonstration. 
While the puzzles omit the interface mechanics, we believe that 
this approach better prepares learners for using programming 
concepts in a novel setting, like the transfer tasks. 

While puzzle participants generally outperformed tutorial 
participants, we did not see significant differences for all tasks. 
Returning to the prior work on the problem completion effect 
may provide ways to further increase learning performance [15]. 
Specifically, we note that problem completion strategies often 
pair completion problems with worked examples [15]. We 
explored presenting examples alongside the puzzles in formative 
testing, but found that many participants preferred not to use the 
examples. Investigating how best to incorporate examples so 
that participants actively engage with example content is an 
interesting direction for future work. 

Finally, we note that we were surprised by the similarity in 
attitudinal results between tutorial and puzzle participants. In 
formative tests where participants interacted with both the 
puzzles and tutorials, we observed a marked preference for the 
puzzles. As one user noted, “I like the puzzles more [than the 
tutorials]… so it was fun.” A within-subjects study comparing 
attitudes towards the tutorials and puzzles may be better able to 
measure our observed preference. However, the lack of 
attitudinal difference between puzzles and tutorials may suggest 
that a motivating context, such as storytelling, plays a larger role 
in supporting motivation in early programming experience than 
the presentation of learning materials. After the initial appeal of 
the system has worn off, it is possible that the learning 
experience will begin to have a larger impact on motivation. 

VIII. CONCLUSION 

In this paper, we presented our programming completion 
puzzles as an effective learning alternative to tutorials. While 
additional work is necessary to improve this strategy further, we 
believe that these puzzles can help users learn programming 
concepts independently. We also hope that this work inspires 
novice programming environment authors to actively utilize 
strategies that facilitate effective learning, ultimately resulting in 
broader access and learning opportunities for children to learn 
computer programming.  
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