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I. INTRODUCTION

Programmers often re-appropriate code or new program-
ming skills they find in unfamiliar code within their own
programs [1], [2]. This process enables programmers, includ-
ing novices, to acquire new programming knowledge while
working on their own programming projects. Unfortunately,
novice programmers often have difficultly understanding and
integrating existing code into their own programs [3], thereby
limiting acquisition of new programming concepts found
within unfamiliar code.

In this paper, I describe my prior work attempting to
decrease the burden of learning new programming concepts
found in unfamiliar code with automatically generated pro-
gramming tutorials. Later, I introduce my proposal to create a
programming environment that adapts to the skill level of the
programmer while introducing programming concepts found
within existing code by suggesting example code alongside
programming puzzles.

II. LEARNING PROGRAMMING WITH AUTOMATICALLY
GENERATED TUTORIALS

Initially, I developed automatically generated programming
tutorials that converted a code snippet into an onscreen tutorial
to enable novices to learn new programming concepts found
within unfamiliar code [4]. These tutorials walked a user
through all of the steps necessary to reconstruct a code
snippet within their own program. In an evaluation, users who
reconstructed code using the tutorials performed 64% better
on near transfer tasks than participants whom did not follow
a tutorial [4].

While promising, these same participants only succeeded in
52% of the near transfer tasks [4]. I originally hypothesized
that this was due to over-whelming participants working mem-
ory resources with many extraneous steps within the tutorials
[5]. To evaluate this, I conducted a preliminary study that
reduced the number of steps within the generated tutorials
by removing all steps that were not related to unfamiliar
programming concepts. The removal of the extra steps made
no difference on performance of a near transfer task.

This suggests that simply removing extra information is
not sufficient to encourage further learning of unfamiliar
programming concepts. Instead, as suggested by cognitive load
theory, I need to tailor new information to the specific learning
needs of each programmer to improve learning.

III. COGNITIVE LOAD THEORY

Humans have very limited working memory. When learning
new concepts, we process the new information in our working
memory. If our working memory becomes overwhelmed, then
our ability to learn additional information is severely hampered
[6]. Cognitive load theory suggests that by carefully managing
a learner’s working memory resources we can increase the
efficiency for a learner to acquire new information [6].

There are two main sources of cognitive load: intrinsic and
extraneous. Intrinsic cognitive load is imposed by the intrinsic
nature of the information. Whereas extraneous cognitive load
is imposed by the manner in which the information is pre-
sented. Applying these principles is commonly accomplished
by providing instructional materials that take into considera-
tion a learner’s prior knowledge and that are carefully authored
to emphasize the new information. This helps prevent the
learner’s working memory resources from becoming exhausted
while processing the new material.

IV. ADAPTING THE PROGRAMMING ENVIRONMENT BASED
ON PROGRAMMER SKILL

I plan to employ cognitive load theory to develop a program-
ming environment that continuously adapts to the individual
learning needs of each programmer. To accomplish this, I
plan to suggest code examples that a programmer will find
relevant to their current project but that also align with their
current skill level. If a programmer then chooses to add the
suggested example code into their program I will generate a
code completion puzzle from the example code. The user then
must successfully complete the puzzle to add the new code
into their program. To adapt to the programmer’s skill, I plan
to additionally develop a rapid programming assessment tech-
nique that is suitable to be used inline within a programming
environment.



I hypothesize that a programming environment that adap-
tively suggests code examples and presents corresponding
completion puzzles based on a learner’s assessed programming
skill will enable the user to learn new programming concepts
found within the unfamiliar code.

A. Rapid Programming Assessment

Assessment of a learner’s skill is typically done with a
traditional test, however this often takes substantially longer
than the rapid online test method [7]. The rapid online test
is well suited to live environments because it provides an
accurate assessment of a learner’s knowledge and users can
complete the assessment in a fraction of the time of traditional
testing methods [7]. The rapid test method prompts learners
to complete the next step towards the solution to the problem.
Based on the granularity of the intermediate step we can infer
the learner’s degree of understanding for this concept [7].

The rapid online testing method is specifically designed for
well structured domains like mathematics that have known and
well-defined intermediate steps. In domains like programming,
intermediate steps are not well-defined. I plan to create a rapid
programming assessment based on the work done for another
ill-structured domain, reading comprehension [8]. Here, the
rapid test asks users to study an example for a short timed
period, followed by one multiple choice question. Each of
the answers in the question describe the previously studied
example with varying degrees of abstractness. From the user’s
choice we can infer the user’s skill level by the degree of
abstractness of the chosen answer [8].

B. Suggesting Examples

To effectively manage a programmer’s cognitive load the
programming environment should suggest code examples that
closely align with user’s current knowledge. Using the infor-
mation gained from the rapid assessment the programming
environment can suggest examples that will likely not over-
whelm the programmer’s working memory resources. This
means the environment will not suggest examples that contain
concepts that programmer already understands, because this
may hinder learning [6]. Instead the environment will carefully
select examples that go slightly beyond what the programmer
currently understands and ignore examples that are likely
to overwhelm the programmer’s working memory resources
because of their inherit difficulty.

Programming concepts are typically taught in a structured
progression in traditional learning environments. Teachers will
often teach programming concepts in an order that gradually
builds to more advanced concepts. I also plan to develop
a programming concept progression that is structured based
on a similar order used in traditional learning environments.
Suggesting examples based on this static progression along
with the user’s assessed skill level will help ensure that users
are not exposed to programming concepts before they are able
to fully process the material in their working memory.

There are other programming environments that also suggest
examples to users [9], [10]. However, I am not aware of

any systems that suggest programming example based on a
learner’s existing knowledge.

C. Programming Puzzles

Once a user has decided to add a suggested example into
their program, we can use this as an opportunity to emphasize
new programming concepts found within the unfamiliar code.
My prior work emphasized these concepts by asking users
to follow a generated tutorial. These tutorials required very
little active engagement, which is required for learning [6].
For learning to occur, users must process information within
their working memory [6]. Completion problems and worked
examples are one effective way to foster learning that are
commonly used when employing cognitive load theory [6].

The programming environment will generate a completion
puzzle from the suggested example that is also accompanied
by several worked examples closely related to the puzzle.
Worked examples enable learners to study the structure of
the concept to then be able to solve their current problem.
In this case a programmer will see a puzzle that contains the
scrambled code from the suggested example. They can then
use the corresponding worked examples as a reference to help
them unscramble the code puzzle.

The puzzles themselves impose extraneous cognitive load
which means I must also vary the complexity of these puzzles
based on the user’s prior experience. The first puzzle a user
sees for a concept in the progression will be straightforward,
whereas later puzzles will be more challenging. I believe that
by varying the presentation of the puzzles based on the user’s
prior knowledge, novice programmer’s will be able to acquire
new programming skills found within unfamiliar code.
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