
Automatically Generating Tutorials 

to Enable Middle School Children to 

Learn Programming Independently

Kyle Harms, Dennis Cosgrove, 

Shannon Gray, Caitlin Kelleher

1



Shortage of Programmers

An estimated 1.4 million computing jobs will be added to the 

United States’ economy between 2008-2018.1

61% of these jobs can be filled based on current college 

graduation rates.1

Shortage of information communications technology workers 

across the European Union.2

2
1 Computing Education and Future Jobs: A Look at National, State, and Congressional District Data (2011)
2 IEEE Job Site: http://careers.ieee.org/article/European_Job_Outlook_0312.php



Middle School Children & 

Computer Programming

Middle school is the time many children decide to opt-out of 

advanced math or science courses.1

By college these students are too far behind to realistically 

succeed in these majors.2

Maintain interest and develop programming skills through 

independent learning.

3
1 Shedding Some New Light on Old Truths: Student Attitudes to School in Terms of Year Level and Gender (1994)
2 Pryor, J.H. et al. 2010. The American Freshman: National Norms for Fall 2009.



Contributions

Demonstrate a process for automatically generating 

programming tutorials from unfamiliar code.

The tutorials improved independent learning of programming 

constructs in near transfer tasks by 64%.

4



Looking Glass

5



Independent Learning In 

Looking Glass

6
Talent Show Program



Learning From Unfamiliar 

Code

7

Find 
Program

Select 
Snippet

Remix 
Snippet

Code Snippet Remixed Code Snippet



Snippet Copied Into Program

8



Exposure to New 

Programming Concepts

9



Independent Learning In 

Looking Glass

10

Find Program1 Select 
Snippet2

Remix 
Snippet2

Programming 
Tutorial

Existing Support for Independent Learning This Talk

1 Harms, K.J. et al. 2012. Designing a community to support long-term interest in programming for middle 

school children. Proc. IDC.
2 Gross, P.A. et al. 2010. A code reuse interface for non-programmer middle school students. Proc. IUI.



Automatic Tutorial Generation

11

Bergman, L. et al. 2005. DocWizards: a system for authoring follow-me documentation wizards. Proc. UIST.

Grabler, F. et al. 2009. Generating photo manipulation tutorials by demonstration. ACM SIGGRAPH.

Fernquist, J. et al. 2011. Sketch-sketch revolution: an engaging tutorial system for guided sketching and 

application learning. Proc. UIST.



Current Generated Tutorial 

Systems

Users must adapt tutorial content to their contexts.

Require explicit authoring phase.

Users may skip steps or make mistakes.

12



Walk-through Tutorial to 

Reconstruct the Snippet

13



Interactive Stencils Tutorial 

Interface

14Harms, K.J. et al. 2011. Improving learning transfer from stencils-based tutorials. Proc. IDC.



Programming Tutorial

15

Find Program
Select 

Snippet
Remix 

Snippet
Programming 

Tutorial

Code Snippet Remixed Code Snippet



16



Snippet Reconstructed 

Through Walkthrough Tutorial

17



Generating Walkthrough 

Tutorials from Code Snippets

18



Reconstructing a Code 

Snippet

1. Insert a Do Together statement.

2. Insert move statement into the Do Together.

3. Insert roll statement into the Do Together.

19



Walkthrough Tutorial Steps

20

Code Snippet Tutorial Steps



Model-Driven Architecture

21

Data – Code StatementModelOn-screen Widget



Translate Code Statements 

into Tutorial Steps

22

Code StatementModelTutorial Step



Draft Tutorial

23

Code Snippet Tutorial Steps



What if the interface is in the 

wrong state to complete the 

current step?

24



Insert Do Together

25



Insert Do Together

26



Insert Do Together

27



Tutorial Step Dependencies

28

On-screen Widgets Dependent Tutorial Steps



How can we present a valid 

tutorial to the user?

29



Presenting the Draft Tutorial

Check if a step’s 

dependencies are satisfied.

Correct unsatisfied 

dependencies.

Initialize the tutorial interface 

for the step.

Ensure user correctly 

completes the step.

30

Draft Tutorial



Algorithm for Presenting 

Steps

31

For each draft tutorial step do:

If step’s dependencies are satisfied

Then:

Present the step to the user.

Validate the user’s progress.

Advance to the next step.

Else:

Create and insert prerequisite step.



Presenting the Tutorial

32

For each draft tutorial step do:

If the step’s dependencies are satisfied 

Then:

Present the step to the user.

Validate the user’s progress.

Advance to the next step.

Else:

Create and insert a prerequisite step.



Check Dependencies

33

For each draft tutorial step do:

If the step’s dependencies are satisfied 

Then:

Present the step to the user.

Validate the user’s progress.

Advance to the next step.

Else:

Create and insert a prerequisite step.



Is the interface in a state where 

we can present this step?

34



Model-Driven Architecture + 

Dependencies

35

ModelsOn-screen Widgets

Dependency



Check Dependencies

36

Models Current Interface State

Dependency

Tutorial Step



Check Dependencies

37

Models Current Interface State

Dependency

Tutorial Step



Check Dependencies

38

For each draft tutorial step do:

If the step’s dependencies are satisfied 

Then:

Present the step to the user.

Validate the user’s progress.

Advance to the next step.

Else:

Create and insert a prerequisite step.



Insert Prerequisite Step

39

For each draft tutorial step do:

If the step’s dependencies are satisfied 

Then:

Present the step to the user.

Validate the user’s progress.

Advance to the next step.

Else:

Create and insert a prerequisite step.



How do we adapt the tutorial to 

put the interface in the correct 

state?

40



Model-Driven Architecture + 

Insert Prerequisite Step

41

Generate & Insert

Models

Dependency

Tutorial Steps



Present Prerequisite Step

42

For each draft tutorial step do:

If the step’s dependencies are satisfied 

Then:

Present the step to the user.

Validate the user’s progress.

Advance to the next step.

Else:

Create and insert a prerequisite step.



Check Dependencies

43

For each draft tutorial step do:

If the step’s dependencies are satisfied 

Then:

Present the step to the user.

Validate the user’s progress.

Advance to the next step.

Else:

Create and insert a prerequisite step.



Present Step

44

For each draft tutorial step do:

If the step’s dependencies are satisfied 

Then:

Present the step to the user.

Validate the user’s progress.

Advance to the next step.

Else:

Create and insert a prerequisite step.



How do we present the step 

to the user?

45



Model-Driven Architecture + 

Present Tutorial Step

46

Model Visible WidgetTutorial Step



Present Step with Stencils

47

Stencils-Based InterfaceTutorial Step

Widget



Validate User’s Progress

48

For each draft tutorial step do:

If the step’s dependencies are satisfied 

Then:

Present the step to the user.

Validate the user’s progress.

Advance to the next step.

Else:

Create and insert a prerequisite step.



How do we prevent mistakes 

from derailing the tutorial?

49



Model-Driven Architecture + 

Record User’s Actions

50

ModelOn-screen Widgets Transaction History



Validating the User’s Progress

51

Equivalent

Current Tutorial Step Latest Recorded Transaction



Advance to Next Step

52

For each draft tutorial step do:

If the step’s dependencies are satisfied 

Then:

Present the step to the user.

Validate the user’s progress.

Advance to the next step.

Else:

Create and insert a prerequisite step.



Advance to Next Step

53

For each draft tutorial step do:

If the step’s dependencies are satisfied 

Then:

Present the step to the user.

Validate the user’s progress.

Advance to the next step.

Else:

Create and insert a prerequisite step.



Check Dependencies

54

For each draft tutorial step do:

If the step’s dependencies are satisfied 

Then:

Present the step to the user.

Validate the user’s progress.

Advance to the next step.

Else:

Create and insert a prerequisite step.



Check Dependencies

55

For each draft tutorial step do:

If the step’s dependencies are satisfied 

Then:

Present the step to the user.

Validate the user’s progress.

Advance to the next step.

Else:

Create and insert a prerequisite step.



Present Step

56

For each draft tutorial step do:

If the step’s dependencies are satisfied 

Then:

Present the step to the user.

Validate the user’s progress.

Advance to the next step.

Else:

Create and insert a prerequisite step.



Automatically Generated 

Walkthrough Programming 

Tutorial

57



Evaluation

40 Middle school aged (10–16 years) participants

1.5 hour sessions each with no more than 5 participants

58

Control Experimental



Programming Constructs

59

Do Together

Execute in Parallel

Count Loop

Loop n times

For Each in Array Loop

Iterate over array

Easy

Hard



Training Phase

60

Control – Snippet Copied into Program

Experimental – Reconstruct Snippet in Tutorial

Remix Animation



Transfer Phase

61

Initial Transfer Task Program

Completed Transfer Task Program



Grading Transfer Task 

Programs

Grading Criteria for the For Each Transfer Program: (5 points)

1. Program contains a For Each construct. If not, stop grading. (+1)

2. For Each contains at least one statement. If not, stop grading. (+1)

3. Array is defined correctly for the animation. (+1)

4. Programming statements use the loop iterator. (+1)

5. Animation is correct. (+1)

62



Results

63

61.90%

40.00%

8.33%

86.67%

70.77%

18.75%

Do Together Count For Each

Average Transfer Program Scores for Each 
Programming Construct Task

Control Experimental

Experimental condition performed 64% better. ANCOVA (F[2,37], p < 0.05).

HardEasy



Implications

Any code can be used as a learning resource.

Users can learn while they follow their own interests.

Personalize tutorials to the learner’s abilities.

64



Thanks

65

Kyle J. Harms

Washington University in St. Louis

harmsk@seas.wustl.edu



Why ANCOVA?

New Looking Glass users often have difficulty locating the 

Control Flow Tab.

We provided a Control Flow Tab Hint

Offered during the transfer program after 5 minutes

Pointed to tab: “To complete this task, look here.”

We used ANCOVA with the presence or absence of this hint 

as a covariate.

The hint was not significant (p = 0.48)

66


