
The Impact of Distractors in Programming

Completion Puzzles on Novice Programmers Position

Statement

Kyle J. Harms

Department of Computer Science & Engineering

Washington University in St. Louis

St. Louis, Missouri, United States

kyle.harms@wustl.edu

I. POSITION STATEMENT

Our previous work has demonstrated that programming
completion puzzles enable novice programmers to acquire new
programming skills [1]. As shown in Fig. 1, programming
completion puzzles ask users to reassemble a block-based
program's statements into the correct order. Users use the
available blocks in the puzzle statement bin (Fig. 1-A) and place
them into the correct order in the puzzle workspace (Fig. 1-B).
In our previous work we only included blocks that were part of
the actual puzzle's solution [1]. However other puzzle-like
programming systems often include distractor statements as part
of the user’s experience [2]. In the context of programming
puzzles, distractors are extra blocks or statements that are not
part of a puzzle’s solution. We wondered what impact distractor
statements might have in programming completion puzzles on
novice programmers? Do distractors also help facilitate learning
programming skills when used in programming completion
puzzles?

Our programming completion puzzles are heavily inspired
by Cognitive Load Theory’s completion problems [3].
Completion problems are partially completed worked examples
where a user completes the remainder of the example. By
limiting extraneous work, completion problems focus a learner’s
mental resources towards processing new material. Our
completion puzzles limit the blocks users need to use to
complete the problem. This is intended to focus and direct their
mental resources towards learning new programming concepts;
a learner does not need to expend mental resources navigating
the interface to the find the correct block. However, we were
unsure how including distractors into completion puzzles might
affect learning outcomes. Since the intent of these problems is
to carefully manage learning resources, it is possible that
distractors may overwhelm learners’ limited working memory
resources, thereby limiting their ability to learn new
programming concepts.

Fig. 1. A typical programming completion puzzle with distractors. Users complete these puzzles by dragging blocks from the puzzle statement bin (A) and dropping

the blocks into the puzzle workspace (B). This puzzle includes several distractor statements (C) and an example of their use in a non-optimal solution (D).

Recently, we have been conducting a formative evaluation
into the impact of distractors within programming completion
puzzles. Fig. 1-C shows an example of several distractor
statements. Distractor statements are not part of the solution to
the puzzle, instead they are extra unnecessary statements that
user’s must rule out in order to solve a puzzle.

From our early observations in this evaluation, we have
noticed that distractors seem to make the puzzles more
challenging for users. We have observed a greater frequency of
comments related to the distractor puzzles being more
challenging and more fun. Further, users typically need more
time to complete a puzzle with distractors than one without. If
distractors do increase the difficulty of the puzzle and the
motivation to remain engaged with the puzzles, then they might
provide a way to encourage users to continue practicing non-
mastered programming concepts.

So far in our formative evaluation we have noticed two ways
to use distractors to increase the difficulty of the puzzles: 1) use
distractors to encourage users to follow a sub-optimal path, and
2) mix up the type of distractors between puzzles. Both of these
methods appear to increase the challenge of the puzzle while
also encouraging users to pay closer attention to the material.

We use sub-optimal path distractors to encourage users to
begin to construct an alternative and incorrect solution to a
puzzle. When constructing an alternative solution, the user will
fail to fully complete the alternative solution because the puzzle
is missing several critical pieces necessary for that solution.
Once a user realizes that she cannot complete the puzzle using
the alternative solution, she is forced to reevaluate her solution
strategy to come up with the proper and correct solution.

See Fig. 1-D for an example of a distractor which encourages
users to take a sub-optimal path. In this puzzle, we noticed that
novices frequently want to repeat statements by duplicating the
statements instead of using a loop. When we provide the
distractor, “grey monkey move arms up and down,” they usually
start down the sub-optimal duplicate statements path. However,
they eventually realize they cannot complete this puzzle by

duplicating the statements because they lack the final statement
necessary for this solution: “brown monkey move arms up and
down.” Rather, they have to reevaluate their solution to realize
that they must use a loop instead. It appears that leading users
down a sub-optimal path has the effect of making the puzzle
more challenging while possibly encouraging more practice
with programming concepts.

We have also observed that providing an unpredictable
experience by mixing up the type of distractors between puzzles
keeps users alert. For example, a puzzle curriculum might begin
with a puzzle that includes sub-optimal distractors and then
follow up with a puzzle that has no distractors. While
completing the second puzzle, we have observed that
participants carefully consider whether or not each statement is
necessary for a solution. With a predictable experience, the users
may begin to use their expectations about distractors to simplify
the problem solving process. An unpredictable completion
problem experience may encourage users to pay closer attention
to the elements needed to solve each puzzle.

Our early work suggests that distractors may provide an
additional approach to encourage novices to learn and practice
programming skills. We also think that the additional challenge
introduced by the distractors may increase the longevity of
programming puzzles as a tool novices may use to develop their
programming skills.

REFERENCES

[1] K. J. Harms, N. Rowlett, and C. Kelleher, “Enabling Independent
Learning of Programming Concepts through Programming Completion
Puzzles,” in 2015 IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC), 2015.

[2] M. J. Lee, A. J. Ko, and I. Kwan, “In-game Assessments Increase Novice
Programmers’ Engagement and Level Completion Speed,” in
Proceedings of the Ninth Annual International ACM Conference on
International Computing Education Research, New York, NY, USA,
2013, pp. 153–160.

[3] J. J. G. Van Merriënboer, “Strategies for Programming Instruction in High
School: Program Completion vs. Program Generation,” J. Educ. Comput.
Res., vol. 6, no. 3, pp. 265–285, Jan. 1990.

